Secure State Estimation against Sparse Attacks on a Time-varying Set of Sensors
Zishuo Li, Muhammad Umar B. Niazi, Changxin Liu, Yilin Mo, Karl H. Johansson
Department of Automation, Tsinghua University, Beijing, China
Division of Decision and Control Systems, Digital Futures, School of EECS, KTH, Stockholm, Sweden
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, USA
Background and introduction
BACKGROUND: Security Problem of Estimation
Safety Critical Industries
- High safety requirements.
- More vulnerable System
- Modern control systems are becoming more open to the cyber-world.
- More complex threats on estimation algorithms.
- System equation and measurement equation:
$$
x(k+1)=Ax(k)+w(k),
$$
$$
y(k)=Cx(k)+v(k)+a(k),
$$
where $x(k)\in{\color{var(--myred)}{\mathbb{R}^n}}$, and
$$
y(k)\triangleq \begin{bmatrix}
y_1(k)\\
\vdots\\
y_m(k)
\end{bmatrix}\in {\color{var(--myred)}\mathbb{R}^m}, C\triangleq \begin{bmatrix}
C_1\\
\vdots\\
C_m
\end{bmatrix},
a(k)\triangleq \begin{bmatrix}
a_1(k)\\
\vdots\\
a_m(k)
\end{bmatrix}
$$
- Measurement equation of sensor $i$:
$$
y_i(k)=C_ix(k)+v_i(k)+a_i(k).
$$
- process noise $w(k)$ and measurement noise $v(k)$ are bounded: $\|w(k)\|_2\leq\mathcal{B}_w $, $\|v(k)\|_2\leq\mathcal{B}_v $.
- $(A,C)$ is observable. Note that $(A, C_i)$ is not necessarily observable.
- Target : $\|\hat{x}(k)-x(k)\|\leq \text{Constant}$ for all admissable attacks. (Consider unstable $A$ for non-trivial.)
Preliminaries on Local Observable Subspace Decomposition
$$A=\begin{bmatrix}
\lambda_1 &0\\
0&\lambda_2
\end{bmatrix}, \quad
C=\begin{bmatrix}
1 &0\\
0&1\\
1 &1\\
1&2
\end{bmatrix}.$$
Define that the observable space w.r.t. sensor $i$ as $$\mathbb{O}_i\triangleq {\rm span} \{C_i^\top , (C_i A)^\top, \cdots, (C_i A^{n-1})^\top \}.$$
We find that
$\mathbb{O}_1={\rm span}\{e_1\}, \mathbb{O}_2={\rm span}\{e_2\},\mathbb{O}_3={\rm span}\{e_1, e_2\}, \mathbb{O}_4={\rm span}\{e_1, e_2\} $,
where $$e_1\triangleq \begin{bmatrix}1& 0\end{bmatrix}^\top , e_2\triangleq \begin{bmatrix}0& 1\end{bmatrix}^\top $$
Preliminaries on Local Observable Subspace Decomposition
$$A=\begin{bmatrix}
\lambda_1 &0\\
0&\lambda_2
\end{bmatrix}, \quad
C=\begin{bmatrix}
1 &0\\
0&1\\
1 &1\\
1&2
\end{bmatrix}.$$
We find:
Sensor 1 can observe state entry 1.
Sensor 2 can observe state entry 2.
Sensor 3 can observe state entry 1,2.
Sensor 4 can observe state entry 1,2.
There are only 4 observability possibilities for one sensor:
(1) Can observe no entry. (2) Can observe entry 1.
(3) Can observe entry 2. (4) Can observe entry 1,2.
Preliminaries on Local Observable Subspace Decomposition
Assumption 1
All the eigenvalues of matrix $A$ have geometric multiplicity 1.
Theorem 1
If Assumption 1 holds, the observable space of a sensor has a group of canonical basis vector. Thus, a sensor either can observe a state entry or not.
[1]Mao, Y., Mitra, A., Sundaram, S., and Tabuada, P. (2022). On the computational complexity of the secure state-reconstruction problem. Automatica, 136, 110083.
Define the observability relationship matrix $\mathcal{Q}$ is constructed by
$$
[\mathcal{Q}]_{i,j}=\begin{cases}
0, e_j\notin \mathbb{O}_i\\
1, e_j\in \mathbb{O}_i
\end{cases}.\qquad
$$
Define sensor $i$'s reduced-order subsystem as $(\tilde{A_i}, \tilde{C_i})$, it is observable. (linear system with $n_i$ states, 1 sensor)
Local Observable Subspace
$$A=\begin{bmatrix}
\lambda_1 &0\\
0&\lambda_2
\end{bmatrix}, \quad
C=\begin{bmatrix}
1 &0\\
0&1\\
1 &1\\
1&2
\end{bmatrix}.$$
The observability relationship is recorded in a 0-1 Matrix $\mathcal{Q}$:
Local Observable Subspace
$$A=\begin{bmatrix}
\lambda_1 &0\\
0&\lambda_2
\end{bmatrix}, \quad
C=\begin{bmatrix}
1 &0\\
0&1\\
1 &1\\
1&2
\end{bmatrix}.$$
The observability relationship is recorded in a 0-1 Matrix $\mathcal{Q}$:
Local Observable Subspace
$$A=\begin{bmatrix}
\lambda_1 &0\\
0&\lambda_2
\end{bmatrix}, \quad
C=\begin{bmatrix}
1 &0\\
0&1\\
1 &1\\
1&2
\end{bmatrix}.$$
The observability relationship is recorded in a 0-1 Matrix $\mathcal{Q}$:
Local Observable Subspace
$$A=\begin{bmatrix}
\lambda_1 &0\\
0&\lambda_2
\end{bmatrix}, \quad
C=\begin{bmatrix}
1 &0\\
0&1\\
1 &1\\
1&2
\end{bmatrix}.$$
The observability relationship is recorded in a 0-1 Matrix $\mathcal{Q}$:
Example on Resilient Fusion
For 4 local observer states:
$$\tilde{x}^1\in\mathbb{R}^1,
\tilde{x}^2\in\mathbb{R}^2,
\tilde{x}^3\in\mathbb{R}^1,
\tilde{x}^4\in\mathbb{R}^2
$$
Fuse those subsystems by taking median:
Secure Estimation Algorithm against static sparse attack
Lemma 1
If the system is $2p$ sparse observable, then $\hat{x}(k)$ above has uniformly bounded error under static sparse attack where ${\rm supp} \{a(k)\}\subset \mathcal{C}$.
$$
\|\hat{x}(k)-x(k)\|_\infty\leq {\rm Constant}\qquad \qquad \qquad \quad$$
$2p$ sparse observable: System is still observable after removing arbitrary $2p$ sensors.
Secure Estimation Algorithm against static sparse attack
Lemma 1
If the system is $2p$ sparse observable, then $\hat{x}(k)$ above has uniformly bounded error under static sparse attack where ${\rm supp} \{a(k)\}\subset \mathcal{C}$.
$$
\|\hat{x}(k)-x(k)\|_\infty\leq {\rm Constant}(\mathcal{B}_w,\mathcal{B}_v,A,C,L_i) $$
$2p$ sparse observable: System is still observable after removing arbitrary $2p$ sensors.
Result under attack on fixed set
Result under attack on fixed set
Result under attack on fixed set
What about time-varying corrupted sensor set?
What about time-varying corrupted sensor set?
Secure Estimation Algorithm
Step 1: update local observer state.
$$\tilde{x}^i(k+1)=(\tilde{A}_i - L_i \tilde{C} ) \tilde{x}^i_+ (k)+L_i y_i(k)$$
Secure Estimation Algorithm
Step 2: For each state entry, take median among all local states that can observe them.
Secure Estimation Algorithm
Step 3: Check compatibility of all those local estimates for each sensor $i$, state entry $j$:
$$
\tilde{x}^i_j:=
\begin{cases}
\tilde{x}^i_j, \text{ if } \|\tilde{x}^i-\hat{x}\|_2\leq (\sqrt{n_i}+1)\gamma \quad \textcolor{blue}{\rm (keeps\ the\ same) }\\
\hat{x}_j, \text{ if } \|\tilde{x}^i-\hat{x}\|_2> (\sqrt{n_i}+1)\gamma \quad \textcolor{red}{\rm (reset) }
\end{cases}
$$
Main result on secure estimation (Theorem 2)
Assume the system is $2p$-sparse observable and the following two conditions hold:
(1)
$\sigma_{\max}\left(\tilde{A}_i-L_i\tilde{C}_i\right)\leq \frac{1}{2\sqrt{n_i}+1}$, $i=1,2,\cdots,m$.
(2) The initial estimate satisfies $\|\hat{x}(0)-x(0)\|_\infty\leq \gamma$.
Then our algorithm provides a secure state estimate $\hat{x}$ in the sense that
$$\|\hat{x}(k)-x(k)\|_\infty \leq \gamma,\quad \forall k\in\mathbb{Z}^+.$$
Simulation on IEEE 14 bus system
generator bus $\mathcal{V}_g=\{1,2,3,6,8\}$, load bus $\mathcal{V}_l=\{2,3,4,5,6,9,10,11,12,13,14\}$
$14\times 2=28$ states (phase angle, angle velocity)
$14\times 4=56$ measurements (phase angle$\times 2$, angle velocity, electric power)
$$ \dot{\theta}_{i}(t) =\omega_{i}(t), $$
$$\dot{\omega}_{i}(t) =-\frac{1}{m_{i}}\left[D_{i} \omega_{i}(t)+\sum_{j \in \mathcal{N}_{i}} P_{t i e}^{i j}(t)- P_{i}(t)+w_{i}(t)\right].$$
$$ \left[\begin{array}{ccc}
y_{i_1}(k) & y_{i_2}(k) & y_{i_3}(k)& y_{i_4}(k)
\end{array}\right]^\top=\left[\begin{array}{ccc}
P_{e l e c, i}(k) & \theta_{i}(k)& \omega_{i}(k) & \omega_{i}(k)
\end{array}\right]^{\top}+v_{i}(k), $$
Attack set design
The attack set loops for every 3 time steps.
Random signal attack
$a_i(k)$ is a random value uniformly distributed in interval $[-10,10]$.
Slope signal attack
$a_i(k)=k/5$ i.e., the magnitude of injected data increases 20 for every second.
Estimation performance under random attack signal
Estimation performance under slope attack signal
Residue decrease by resetting
Residue decrease by resetting
Summary
Propose an algorithm for time-varying $p$-sparse attack on sensors.
Algorithm structure
Step 1: local observer update
Step 2: median fusion
Step 3: Detection and reset
Requirements
Condition on observability (closer to fundamental limit)
Non-derogatory dynamic matrix $A$
Results
secure estimation $\|\hat{x}(k)-x(k)\|_\infty\leq \gamma$.
No false alarm.
The slides can be seen at
https://zs-li.github.io/talk/IFAC2023/index.html
My e-mail is:
lizs19@mails.tsinghua.edu.cn
Questions from the audience!