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Distributed Sequential Hypothesis Testing
With Byzantine Sensors

Zishuo Li , Student Member, IEEE, Yilin Mo, Member, IEEE, and Fei Hao

Abstract—This paper considers the problem of sequential binary
hypothesis testing based on observations from a network of m
sensors where a subset of the sensors is compromised by a malicious
adversary. The asymptotic average sample number required to
reach a certain level of error probability is selected as the perfor-
mance metric of the system. We propose an asymptotically optimal
voting algorithm for the sensor network with a fusion center and
generalize it to fully-distributed networks, where the algorithm
stays asymptotically optimal under the weak assumption that the
sensor network is connected. Moreover, we prove that both of the
proposed algorithms are asymptotically optimal in the presence of
Byzantine sensors, in the sense that each of them forms a Nash
equilibrium with the worst-case attack (flip-attack). Compared to
existing distributed detection strategies, the proposed scheme has
a low message complexity, which is independent of the error prob-
ability and the sample number, by taking advantage of the sparsity
of votes. The results are corroborated by numerical simulations.

Index Terms—Sequential analysis, distributed algorithms,
wireless sensor networks, Byzantine attack, fault tolerant systems,
asymptotic optimality.

I. INTRODUCTION

Background and Motivation:
Distributed inference with sensor networks has drawn sub-

stantial research attention due to its wide application in power
grids, cognitive radio [1], wireless sensor networks [2], Internet
of Things, etc. As sensors in the network are usually spatially
separated and communicate by wired/wireless channels, they
are exposed to various interference and attacks. Therefore, it is
crucial that the distributed detection schemes can withstand a
certain number of corrupted agents.

Recent studies on resilient distributed detection include fault
identification schemes [3], [4] and tolerant schemes [5], [6], etc.,
as summarized in [7]. Rawat et al. [3] quantified the reputation
of a sensor by its time of mismatches with the final decision,
and the sensor with worse reputation (more mismatches) over
a threshold will be tagged as Byzantines and removed from

Manuscript received July 15, 2020; revised February 7, 2021; accepted April
6, 2021. Date of publication April 22, 2021; date of current version June
4, 2021. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Remy Boyer. This work was supported
by the National Key Research and Development Program of China under Grant
2018AAA0101601 and in part by the Nature Science Foundation of China under
Grant 61573036. (Corresponding author: Yilin Mo.)

Zishuo Li and Yilin Mo are with the Department of Automation and
BNRist, Tsinghua University, Beijing 100084, China (e-mail: lizs19@mails.
tsinghua.edu.cn; ylmo@mail.tsinghua.edu.cn).

Fei Hao is with the School of Automation Science and Electrical Engineering,
Beihang University, Beijing 100191, China (e-mail: fhao@buaa.edu.cn).

Digital Object Identifier 10.1109/TSP.2021.3075147

the decision process. Ren et al. [6] pursued an efficient and
resilient detection scheme by removing the statistics with the
largest deviation from the decision-making process.

The aforementioned distributed detection schemes assume the
existence of a fusion center (FC) that can communicate with
all the sensors in the network. However, the fusion center is
subject to single point of failure. Furthermore, due to various
practical constraints such as transmitting distance of wireless
channel and power limit of a sensor, it may be desirable to
adopt a peer-to-peer local information exchange scheme, i.e.,
fully-distributed scheme. Research on fully-distributed detec-
tion problem progress significantly based on average consen-
sus algorithm. The Belief Consensus algorithm proposed by
Olfati-Saber et al. [2] solved the distributed detection problem
using the average consensus algorithm to calculate the likelihood
values (or beliefs) in a Bayesian network. Kar and Moura [8],
[9] focused on the topology optimization problem subjecting
to communication noise, random topology switch, and commu-
nication constraints. Besides the methods that only carry out
consensus on sensors’ states, works in [10], [11] solved the
consensus problem by updating the state based on neighbors’
states and new local observations at the same time, which is
referred as consensus+innovation distributed algorithm.

However, naive average consensus algorithm utilized in the
previous distributed detection schemes is not resilient when
there are malicious agents in the network [12]. Research on
resilient variants of consensus-based detection scheme includes
attempts to exclude nodes from the value consensus process with
significant deviated states [1], [13] and weight design to mitigate
the effect of data falsification attacks [14]. Furthermore, most
of the algorithms based on naive consensus and their secure
variants suffer from high communication complexity, which is at
least proportional to time because they perform value averaging
(almost) every time step.

In contrast to the previous fixed sample size analysis or static
stopping scheme that gives a decision or belief whenever new
observations arise, another path to tackle the hypothesis testing
problem is sequential hypothesis testing or sequential analysis
approach proposed by Wald [15]. The number of samples needed
for sequential analysis is not known in advance. The system
stops taking observations as soon as the existing statistics are
enough to make a decision. The goal is to make decisions
about the hypothesis with as few observations as possible while
controlling the probability of making mistakes. Since the number
of samples is adjusted dynamically according to the current
statistics, sequential testing is more sample-efficient than static
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ones [16]. Moreover, the optimality of Sequential Probability
Ratio Test (SPRT) has been proved by Wald et al. [17], and
the optimal nature of SPRT attracts a considerable amount
of research on the fusion center formulation of multi-sensor
SPRT [18]–[20]. However, to the best of our knowledge, re-
search on either the security problem or the fully-distributed
formulation of sequential hypothesis testing has not been well
explored.

Our work and contribution:
We consider the distributed binary hypothesis testing problem

where a binary state θθθ = {0, 1} is detected by a group of m
sensors that generate observations according to a background
hypothesis. c out of m sensors are manipulated by a malicious
adversary who can inject arbitrary data into the observations and
communication messages at compromised sensors. This paper
aims to design a distributed detection scheme to decide on the
time to stop and the hypothesis to choose based on observations
from the partly corrupted sensor network with minimum average
sample number under error probability constraints. Our previous
result has been published in [21]. The main contributions of this
paper are summarized as follows:

1) We propose a voting detection scheme named VSPRT
(voting SPRT, Section III, IV) in fusion center scenario
and a generalized scheme named DVSPRT (distributed
voting SPRT, Section V) in fully-distributed scenario.

2) We quantify the limit distribution of the sample number of
VSPRT and DVSPRT while most existing works consider
the expectation of sample number. Based on this more
refined analysis, we prove that our proposed VSPRT and
DVSPRT are both order-1 asymptotic optimal and quan-
tify their gap from the theoretical optimal. Moreover, the
optimality of DVSPRT holds for arbitrary topology as long
as the graph is connected.

3) In the presence of attack, when the number of com-
promised sensors is known, we prove that the detection
strategy VSPRT (DVSPRT) and system disturbing strat-
egy flip-attack form a Nash equilibrium pair, i.e., the
proposed VSPRT (DVSPRT) scheme achieves the fun-
damental limit among all possible detection strategies.
When the number of compromised sensors is unknown,
the proposed schemes are still resilient with appropriate
parameter choice.

4) We further prove that the proposed DVSPRT scheme
has message complexity O(mM )1, which is independent
of error probability and sample number. In contrast, the
message complexity of most fully-distributed detection
schemes in the literature is O(mMT ), which scales linearly
with respect to detection delay T , i.e., decreasing error
probability requires more time (or more samples) and thus
more communication energy.

Organization:
The rest of this paper is organized as follows: In Section II, we

formulate the problem of sequential binary hypothesis testing,
define the performance metric, and demonstrate corresponding
fundamental limits. Section III proposes the voting scheme

1m is the number of sensors and M is the number of communication links.

named VSPRT in fusion center formulation, quantifies its per-
formance, and proves its optimality in the absence of attack.
In Section IV, the Byzantine attack model is formulated, the
performance of VSPRT under attack is quantified. In Section V,
VSPRT is generalized to DVSPRT in fully-distributed scenario.
We quantify the performance and prove the optimality in the
absence and in the presence of attack. We further investigate
the resiliency of DVSPRT with communication manipulation
and link failure. In Section VI, the results are collaborated by
numerical simulations. Section VII finally concludes the paper.

Notations:
We denote by Z

+ the set of strictly positive integers and by R

the set of real numbers. The cardinality of a set S is denoted as
|S|. The transpose of a matrix is denoted by superscript T . If not
explicitly stated, ∞ represents +∞. N (μ, σ 2) denotes normal
distribution with mean μ and variance σ 2. In particular, N (0, 1)
denotes standard normal distribution. Let f , g be real-valued
functions whose ranges are both unbounded subsets ofR. f (x) ∼
g(x) with respect to a limit process represents lim f (x)

g(x) = 1. The
little o notation f (x) = o(g(x)) with respect to a limit process
means lim f (x)

g(x) = 0. The big O notation f (x) = O(g(x)) with

respect to a limit process means lim sup | f (x)|
g(x) < ∞.

II. PROBLEM FORMULATION

A. Sequential Binary Hypothesis Testing

We consider the problem of binary hypothesis testing
where a group of m sensors infers a binary state θθθ ∈ {0, 1}
from their measurements. At each discrete time index k
(k ∈ Z

+), the observations are generated at each sensor i ∈
{1, 2, . . ., m} according to θθθ . Let the column vector z(k) =
[z1(k), z2(k), . . ., zm(k)]T ∈ R

m denote the observations at time
k from all m sensors, and zi(k) is the observation from sensor i.

For the null hypothesis H0 (θθθ = 0), probability measure gen-
erated by zi(k) is denoted as ν0 and for the alternative hypothesis
H1 (θθθ = 1), it is denoted as ν1. In other words, for any Borel-
measurable set B ⊆ R, the probability that zi(k) ∈ B equals to
νθθθ (B). We assume that all observations from different sensors
at different times are identically distributed and conditionally
independent given the true hypothesis. Denote the probability
space generated by all measurements given the true hypothesis
Hθθθ as (�, F , Pθθθ ), i.e.,

Pθθθ (zi1 (k1) ∈ B1, . . . , zil (kl ) ∈ Bl )

=
{

ν0(B1)ν0(B2) . . . ν0(Bl ), given θθθ = 0

ν1(B1)ν1(B2) . . . ν1(Bl ), given θθθ = 1
,

where (i j, k j ) �= (i j′ , k j′ ) for all j �= j′. The expectation taken
with respect to Pθθθ is denoted by Eθθθ . We make the following
assumptions, which are conventional in statistical inference.

Assumption 1 (Detector knowledge): The probability mea-
sure νθθθ , θθθ ∈ {0, 1} is known to the detector.

We further assume that probability measure ν0 and ν1 are
well-defined:
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Assumption 2 (Well-defined probability measure):
1) Kullback-Leibler (K–L) divergence between ν0, ν1 is

well-defined2, i.e., 0 < D0, D1 < ∞, where D0, D1 are
defined as

D1 �
∫

z∈R
log

(
dν1(z)

dν0(z)

)
dν1,

D0 �
∫

z∈R
log

(
dν0(z)

dν1(z)

)
dν0,

and dν0(·)
dν1(·) ,

dν1(·)
dν0(·) are the Radon-Nikodym derivative.

2) Variance of log-likelihood ratio is well-defined, i.e.,
V1,V0 < ∞, where V1,V0 are defined as:

V1 �
∫

z∈R

[
log

(
dν1(z)

dν0(z)

)
− D1

]2

dν1(z),

V0 �
∫

z∈R

[
log

(
dν0(z)

dν1(z)

)
− D0

]2

dν0(z).

Due to the Law of Large Numbers, increasing number
of observations leads to decreasing error probability. How-
ever, in many practical applications, observations are costly
and introduce unnecessary delays in decisions. We adopt the
framework of Sequential Analysis to quantify and optimize
the error-delay trade-off. The observation sampling is termi-
nated according to a specific rule, e.g., when error probability
reaches a certain threshold. To be precise, at every time k,
the decision is made by choosing one element from the set of
decisions:

fk ∈ {continue, 0, 1},
where the choice “continue” means taking next round of ob-
servations at time k + 1 since existing observations are insuffi-
cient to support either hypothesis. Decision fk = θθθ means stop
taking observations and choosing hypothesis Hθθθ (θθθ = 0, 1) at
time k. A detection strategy or a hypothesis testing scheme3

f � { f1, f2, · · · } is defined as an infinite sequence of decisions
from time 1 to ∞.

B. Performance Evaluation and Fundamental Limits

Define the (random) stopping time T with respect to strategy
f as:

T � inf {k| fk �= continue} .

T is a {Fk}-stopping time, where Fk is a σ -field of all the
observations from time 1 to k: Fk = σ {z(1), z(2), . . . , z(k)}. In
the context of sequential test, T denotes the sample number or
delay required to make a decision. We will use these two terms
interchangeably in the remainder of the paper.

2The existence of K–L divergence implies that probability measure ν0, ν1
are absolutely continuous with respect to each other, that is, for any Borel-
measurable set B ⊆ R, if νθθθ (B) = 0 then ν1−θθθ (B) = 0, for both θθθ = 0, 1.

3In the remainder of the paper, a detection strategy or a detection scheme
specifically refers to a sequential binary hypothesis testing algorithm design,
including when to stop and which hypothesis to choose, denoted as f .

The type-I error (false alarm rate) and type-II error (missing
detection rate) are respectively probabilities of making a wrong
decision when the background hypothesis is H0 and H1:

type-I error: e0 = P0 ( fT = 1) , (1)

type-II error: e1 = P1 ( fT = 0) , (2)

where fT represents the decision at termination time T . We
consider the following problem where the expected delay is min-
imized under error probability constraints, which is conventional
in literature considering optimality of sequential test (e.g., [19],
[22]).

Problem 1:

min
f

Eθθθ [T ], θθθ = 0, 1

s.t. e0 ≤ α, e1 ≤ β. (3)

Define the set of all admissible detection strategies that satisfy
the error probability constraint as

F � { f |e0 ≤ α, e1 ≤ β}, (4)

where 0 < α, β < 1. Wald et al. [17] has proved that for a
single sensor, among all f ∈ F , SPRT optimizes Problem 1 for
both θθθ = 0 and θθθ = 1 simultaneously. However, for distributed
detection problem, it is in general intractable from a dynamic
programming point of view [23], and we turn to asymptotic
optimality analysis. Following definition in [19] [22], we define
the order of asymptotic optimality.

Definition 1 (Optimality): Let T ∗(m) be the stopping time of
the optimum detection strategy with m sensors that satisfies the
two error probability constraints in (3) with equality. Then, as4

α, β→0, the detection strategy inF with stopping time T is said
to be order-1 asymptotically optimal if

1 ≤ Eθθθ [T ]

Eθθθ [T ∗(m)]
≤ 1 + o(1)

holds for both θθθ = 0 and θθθ = 1. It is order-2 asymptotically
optimal if

0 ≤ Eθθθ [T ∗(m)] − Eθθθ [T ] ≤ O(1)

holds for both θθθ = 0 and θθθ = 1.
Moreover, the minimum expected stopping time among all

f ∈ F is provided in the following. The proof can be found
in [24].

Proposition 1 (Fundamental Limit): Recalling that T ∗(m) is
the stopping time of the optimum detection strategy among F
with m sensors, we have

E0[T ∗(m)] = 1

mD0

[
α log

1 − β

α
+ (1 − α) log

β

1 − α

]
, (5)

E1[T ∗(m)] = 1

mD1

[
(1 − β ) log

1 − β

α
+ β log

β

1 − α

]
. (6)

4In order to prevent degradation problems, the limit process α, β→0 in
this paper is assumed to satisfy 0 < lim α/β < ∞. This assumption is made
throughout the paper.
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As α, β→0, results above can also be written as

E0[T ∗(m)]

= | log β|
mD0

+ O(1), E1[T ∗(m)] = | log α|
mD1

+ O(1).

The results in Proposition 1 provide lower bounds of Eθθθ [T ]
for all possible detection strategies. Based on these performance
bounds, we will prove the optimality of our proposed detection
strategies in Section III (fusion center) and Section V (fully-
distributed).

III. VOTING SCHEME WITH FUSION CENTER

In this section, we consider the scenario where there is a fusion
center that can communicate with every sensor in the network.
We will propose a voting scheme in this formulation based on
single sensor SPRT and decision voting. It is named as VSPRT
(short for voting SPRT) in this paper. We will present the VSPRT
scheme, quantify its performance and prove its optimality. This
scheme will be used as a baseline to evaluate the performance
of fully-distributed detection schemes in subsequent sections.

A. Voting SPRT

Voting SPRT is a detection strategy where every sensor cal-
culates its local cumulative log-likelihood ratio Si(n):

Si(n) �
n∑

k=1

li(k) =
n∑

k=1

log

(
dν1(zi(k))

dν0(zi(k))

)
(7)

and compares Si(n) with a pair of thresholds h0, h1 > 0. The
thresholds are chosen according to the error probability con-
straints:

h1 = − log α + log
(m

r

)
r

, h0 = − log β + log
(m

r

)
r

, (8)

where
(m

r

)
is the combinatorial number of picking r unordered

outcomes from m possibilities. The integer r (1 ≤ r ≤ m) is the
minimum number of votes required to support a hypothesis for
final decision. This number r is an adjustable parameter of the
VSPRT scheme. Sensor i casts a ballot supporting H1 (H0) at the
first time when random walk Si(k) crosses the threshold h1 (h0).
The corresponding stopping times are defined as

τ+
i (h1) � inf

k∈Z+
{k|Si(k) ≥ h1}, (9)

τ−
i (h0) � inf

k∈Z+
{k|Si(k) ≤ −h0}. (10)

The two first-passage time τ+
i (h1) and τ−

i (h0) are also the
moments when sensor i reports a vote supporting hypothesis
H1 and hypothesis H0 respectively. In the following we omit the
thresholds h0, h1 and parentheses and denote them as τ+

i , τ−
i for

notation simplicity. The vote indicators at time k for hypothesis
H1 and hypothesis H0 are defined respectively as

δ+
i (k) �

{
1, k ≥ τ+

i
0, k < τ+

i
, δ−

i (k) �
{

1, k ≥ τ−
i

0, k < τ−
i

. (11)

The vote indicator is used to indicate whether sensor i has cast a
vote at time k. Since every sensor has only one vote for each of

Fig. 1. An example with thresholds h1 = h0 = 20. The sensor i vote for both
hypotheses.

the two hypotheses, each of the indicator changes at most once
among all the time steps k ∈ Z

+. The indicator δ+
i (k) jumps

from 0 to 1 when sensor i reports a vote supporting H1. 1. It is
similar for δ−

i (k) and H0. An example is illustrated in Fig. 1.
Remark 1: The random walk Si(k) may cross the same thresh-

old multiple times but only the first cross of h1 will cast a vote
for hypothesis H1, and only the first cross of −h0 will cast a
vote for hypothesis H0. Moreover, one sensor may send votes
for both hypotheses at different time steps (see Fig. 1).

Denote the earliest time that there are (at least) r votes of same
type as:

τ+(r) � inf
k∈Z+

{
k

∣∣∣∣∣
m∑

i=1

δ+
i (k) ≥ r

}
, (12)

τ−(r) � inf
k∈Z+

{
k

∣∣∣∣∣
m∑

i=1

δ−
i (k) ≥ r

}
. (13)

As soon as there are r votes supporting the same hypothesis, the
VSPRT scheme stops sampling and chooses the corresponding
hypothesis as the final decision, i.e.,

fk (r) =
⎧⎨
⎩

0, k = τ−(r) ≤ τ+(r)
1, k = τ+(r) < τ−(r)

continue, k < min{τ+(r), τ−(r)}
. (14)

The VSPRT scheme is denoted as f (r) � { fk (r)}∞k=1. The cor-
responding stopping time is defined as

τ (r) � min{τ+(r), τ−(r)}. (15)

B. Performance of VSPRT

In this subsection, we quantify the performance of VSPRT.
In existing literatures [6], [20], [22] and our previous work [21],
the stopping time T is quantified using expectation E[T ]. It is
insufficient to characterize the randomness of T . For instance,
two stopping times may have the same expectation, but the one
with larger variance has more uncertainty and larger probability
of being extremely large.
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In order to establish more accurate analysis on random
stopping time T , we consider the γ -quantile (0 < γ < 1) of
distribution of T as a finer metric:

tθθθ,γ (T ) � inf
t∈R+

{t |Pθθθ (T ≤ t ) ≥ γ } , θθθ = 0, 1. (16)

In other words, function tθθθ,γ (T ) with respect to γ is the inverse
function of the cumulative distribution function (CDF) of T .
This finer characterization of T enables us to quantify the
higher-order optimality of detection strategy and evaluate real-
world performance more accurately. Define the CDF of standard
normal distribution N (0, 1) as �(·). The corresponding inverse
function is denoted as �−1(·). The performance of VSPRT is
quantified in the following theorem whose proof is provided in
Appendix XI.

Theorem 1: For VSPRT scheme defined in (14) with m/2 <

r ≤ m, we have the following results:

t0,γ

(
τ−(r)

) ≤ | log β|
rD0

+ �−1
(
γ

1
m

) √V0| log β|
rD3

0

+ o
(√

| log β|
)

, (17)

t1,γ

(
τ+(r)

) ≤ | log α|
rD1

+ �−1
(
γ

1
m

) √V1| log α|
rD3

1

+ o
(√

| log α|
)

, (18)

as α, β→0. The equalities are achieved when r = m.
Based on Theorem 1, we are able to quantify the distribution

of stopping time with r = m, i.e., τ−(m) and τ+(m). Define
Nm(0, 1) as the probability distribution whose CDF is [�(·)]m.
The probability distributions of τ−(m) and τ+(m) are quantified
in Corollary 1 whose proof is in Appendix XI.

Corollary 1: In the absence of attack, the stopping times
τ+(m) and τ−(m) satisfy the following as α, β→0:

τ+(m) − | log α|
D1√

V1

D3
1
| log α|

d−→ Nm(0, 1),
τ−(m) − | log β|

D0√
V0

D3
0
| log β|

d−→ Nm(0, 1),

where
d−→ means convergence in distribution. Hence, the corre-

sponding expectation satisfy

E1[τ (m)] ≤ E1[τ+(m)] ≤ | log α|
mD1

+ O
(√

| log α|
)

, (19)

E0[τ (m)] ≤ E0[τ−(m)] ≤ | log β|
mD0

+ O
(√

| log β|
)

, (20)

as α, β→0, and VSPRT with r = m is of order-1 optimal.
In order to give the readers a more intuitive understanding

about the limit distribution Nm(0, 1), its cumulative distribu-
tion function (CDF) and probability density function (PDF) are
illustrated in Fig. 2.

According to Theorem 1 and Corollary 1, choosing larger r
leads to better performance because it reduces the first-order
term | log β|

rD0
( | log α|

rD1
) and thus reduces detection delay while hold-

ing the same error probability. Therefore, choosing the largest
r = m yields the asymptotic least expected delay and further

Fig. 2. The PDF and CDF of distribution Nm(0, 1) with different m. When
m > 1, the expectation of distribution Nm(0, 1) is strictly positive.

leads to order-1 optimality. This result coincides with Mei’s
SPRT in [18].

However, as one can verify, a random variable drawn from
distribution Nm(0, 1) has strictly positive expectation when m >

1, which means there is a gap between Eθθθ [τ (m)] and the optimal
Eθθθ [T ∗(m)]. The gap is of order

√| log α| and goes to infinity as
α→0. Similar results also apply on β. Therefore, our proposed
VSPRT is not order-2 optimal when m > 1. Even though VSPRT
is not higher-order optimal, it has the following merits:

(1) VSPRT is resilient to Byzantine sensors by a conservative
choice of r < m. Moreover, as will be shown in Section IV,
VSPRT is optimal against attack considering the worst-case
performance.

(2) VSPRT is easily generalized to fully-distributed scenarios
with low message complexity by taking advantage of the sparsity
of the votes. In Section V, we leverage these merits to design
a fully-distributed resilient detection scheme named DVSPRT
(distributed voting SPRT).

IV. VSPRT WITH BYZANTINE SENSORS

This section demonstrates that the VSPRT scheme is resilient
to Byzantine attack on an unknown subset of sensors. The
attack model is formulated, and the fundamental limit of the
average sample number in the presence of attack is established.
Moreover, we prove that VSPRT achieves this fundamental limit.

A. Attack Model

Malicious adversary manipulates data by adding bias values
on the measurements of the compromised sensors. At time k,
the measurements received by all the sensors can be collected
as a vector

y(k) = z(k) + a(k), (21)
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where z(k) is the true measurement generated according to
background hypothesis, and a(k) is the bias vector injected by
the attacker. The i-th entry yi(k) is the manipulated observation
at sensor i. Define the support of vector a ∈ R

m as supp(a) �
{i|1 ≤ i ≤ m, ai �= 0} where ai is the i-th entry of vector a.
Denote the index set of all sensors as S � {1, 2, . . . , m}. We
have the following assumptions on the malicious adversary.

Assumption 3 (Sparse Attack): There exists a time invariant
index set C ⊆ S with |C| = c such that

⋃∞
k=1 supp{a(k)} = C.

Furthermore, the detector knows the cardinality c, but it does not
know the set C. We further assume less than half of the sensors
are compromised, i.e., m > 2c.

Remark 2: It is conventional in the literature (e.g., [25] [26])
to assume that the attacker possesses limited resources, i.e.,
can only corrupt a subset of sensors with known cardinality.
Assumption 3 does not rule out the case where the number
of compromised sensors is unknown. Number c is a design
parameter set up by the system operator representing how many
compromised sensors the detection scheme can tolerate. If the
exact number of compromised sensors is no greater than c, the
proposed scheme is still resilient. Otherwise, the system may be
compromised, and we need a larger c for algorithm design.

Motivated by the unencrypted and encrypted communication
in sensor networks, we define two kinds of attackers distin-
guished by their information set.

Assumption 4 (Attacker Knowledge):
A weak attacker has the following information: 1) the prob-

ability measure, i.e., ν0 and ν1; 2) the real system state θθθ ; 3)
the historical original measurements from compromised sen-
sors: {zi(n) : i ∈ C, 1 ≤ n ≤ k}. Besides the information above,
a strong attacker also knows the historical original measurements
from honest sensors: {zi(n) : i ∈ S \ C, 1 ≤ n ≤ k}.

Remark 3: In real-world scenarios, most binary hypothesis
testing problems focus on monitoring an interested state, and an
alarm is triggered when the state deviates from the normal one.
For instance, the sensors monitor the smoke and temperature for
fire alarm. In this case, the hypothesis H0 represents the safe
state and H1 represents the abnormal state. It is possible that the
malicious attacker is the cause of an abnormal state H1 (e.g.,
causing fire) and intends to remain undetected by the system
at the same time by manipulating sensor readings. Therefore,
the assumption that the attacker knows the true hypothesis is
reasonable for these scenarios and has real-world backgrounds.

For an unencrypted sensor network, a Byzantine attacker is
modeled as a strong attacker who has access to all sensors’ ob-
servations. For an encrypted sensor network, only observations
at compromised sensors are known to the adversary, and the
Byzantine attacker is modeled as a weak attacker. It will be
claimed in Remark 5 that the delay upper bound of VSPRT in
presence of strong attacker and weak attacker is the same, i.e.,
in the sense of worst-case performance, knowing observations
at honest sensors cannot benefit an attacker when using VSPRT.

An admissible attack strategy is a mapping from attacker’s
information set to the bias vector:

weak attacker:
{
θθθ, C, k, {zi(n)}i∈C,n≤k

} g−→ a(k),

strong attacker:
{
θθθ, C, k, {zi(n)}i∈S,n≤k

} g−→ a(k),

where g is a measurable function, and a(k) satisfies Assump-
tion 3.

Remark 4: With the constraints in Assumptions 3 and 4, the
adversary still has adequate knowledge about the system and
can carry out complex attack strategies such as time-varying or
probabilistic ones. The compromised sensors can “cooperate”
since bias vector is designed based on global information from
all compromised sensors.

Denote the probability measure and expectation under attack
strategy g on set C as P

g,C
θθθ and E

g,C
θθθ . The corresponding error

probabilities under attack are defined as the largest one among
all possible C:

eg
0 � max

|C|=c
P

g,C
0 [ fT = 1], eg

1 � max
|C|=c

P
g,C
1 [ fT = 0]. (22)

The expected delay is defined similarly:

E
g
θθθ [T ] � max

|C|=c
E

g,C
θθθ [T ], θθθ = 0, 1. (23)

Recalling definition in (16), tθθθ,γ (·) under attack g is defined as

t g
θθθ,γ (T ) � max

|C|=c
inf

t

{
t |Pg,C

θθθ (T ≤ t ) ≥ γ
}

, θθθ = 0, 1. (24)

B. Fundamental Limits

In this subsection, we propose an attack strategy which
provides a fundamental performance limit for all admissible
detection scheme. Define sensor index set

O0 � {1, 2, . . . , c}, O1 � {m − c + 1, m − c + 2, . . . , m}.
The attacker first generates random observations yi(k) at time k
for every sensor i ∈ Oθθθ according to the distribution which is
opposite to the real hypothesis, i.e., the following holds for each
Borel set B:

P[yi(k) ∈ B] = ν1(B), ∀i ∈ O1, given θθθ = 0. (25)

P[yi(k) ∈ B] = ν0(B), ∀i ∈ O0, given θθθ = 1. (26)

Then the injected bias data ai(k) is designed to make sure the
final observation zi(k) + ai(k) of sensor i ∈ O0∪O1 is the same
as yi(k):

ai(k) = yi(k) − zi(k), i ∈ O0 ∪ O1. (27)

We denote the attack strategy defined in (25) to (27) as g∗. It
is called flip-attack in this paper. We have the following theorem
quantifying the performance fundamental limits of all detection
schemes under the proposed attack g∗.

Theorem 2: For any admissible detection strategy f under
flip-attack g∗, we have the following results for the stopping
time T with respect to strategy f :

inf
f ∈F

E
g∗
0 [T ] ≥ E0[T ∗(m − 2c)] = | log β|

(m − 2c)D0
+ O(1), (28)

inf
f ∈F

E
g∗
1 [T ] ≥ E1[T ∗(m − 2c)] = | log α|

(m − 2c)D1
+ O(1), (29)

where F � { f |e0 ≤ α, e1 ≤ β}.
Proof: Under attack g∗, the compromised sensor set is C =

Oθθθ given hypothesis Hθθθ . In this case, for either θθθ = 0 or θθθ = 1,
sensors in O0 will follow distribution ν0 and sensors in O1 will
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follow distribution ν1. In other words, only sensors in S \ (O0 ∪
O1) have different distributions under different hypotheses, and
sensors in O0 ∪ O1 provide no information for distinguishing
the hypotheses. As we assume m > 2c, S \ (O0 ∪ O1) �= ∅.
Therefore,

E
g∗
θθθ [T ]

∣∣∣
S

= Eθθθ [T ]|S\(O0∪O1 ) ,

where the notation E
g
θθθ [T ]|S (expectation restricted on a set S)

means the detection scheme only takes observations in set S .
Since |S \ (O0 ∪ O1)| = m − 2c, according to Proposition 1,
the results are obtained. �

Theorem 2 provides a performance fundamental limit in
presence of Byzantine attack. No detection strategy can have
strictly lower expected sample number than Eθθθ [T ∗(m − 2c)] in
presence of flip-attack. In the following subsection, we quantify
the performance of VSPRT in presence of attack and prove that
VSPRT achieves the performance bound in Theorem 2.

C. Achievability

In the presence of attack, the VSPRT scheme uses manipu-
lated observations to calculate log-likelihood ratios:

li(k) = log

(
dν1(yi(k))

dν0(yi(k))

)
.

The thresholds chosen according to probability constraints are:

h1 = − log α + log
( m

r−c

)
r − c

, h0 = − log β + log
( m

r−c

)
r − c

. (30)

The remaining procedures of VSPRT are all the same as Subsec-
tion III-A. The following theorem quantifies the performance of
VSPRT in the presence of attack, and the proof is provided in
Appendix XIII for legibility.

Theorem 3: For any admissible attack strategy g on arbitrary
sensor set C with |C| = c. The following results hold for m/2 <

r ≤ m − c as α, β→0:

t g
0,γ

(
τ−(r)

) ≤ | log β|
(r − c)D0

+ �−1
(
γ

1
m

) √
V0| log β|
(r − c)D3

0

+ o
(√

| log β|
)

. (31)

t g
1,γ

(
τ+(r)

) ≤ | log α|
(r − c)D1

+ �−1
(
γ

1
m

) √
V1| log α|
(r − c)D3

1

+ o
(√

| log α|
)

. (32)

According to Theorem 3, increasing r (r ≤ m − c) will de-
crease the delay. By choosing r = m − c, the fundamental limits
in Theorem 2 are achieved. We cast the detection problem as a
zero-sum game between detecting strategy f and attack strategy
g with pay-off of f defined as5 either ρ0 or ρ1:

ρ0( f , g) � lim
α,β→0

| log β|
E

g
0[T ]

, ρ1( f , g) � lim
α,β→0

| log α|
E

g
1[T ]

. (33)

5Pay-off of g is defined as −ρ0 or −ρ1 accordingly.

Since the detection strategy pursues smaller error probability
α (or β) with lower expected delay E

g
θθθ [T ], larger ρθθθ ( f , g)

(θθθ = 0, 1) represents better performance. The detection strategy
f aims at increasing ρθθθ , and the malicious attacker g intends
to decrease ρθθθ . Based on Theorem 3, we have the following
performance bound of VSPRT scheme f (r).

Corollary 2: Under any admissible attack strategy g, if r ≤
m − c, for arbitrary admissible attack g, we have

ρθθθ ( f (r), g) ≥ (r − c) · Dθθθ , θθθ = 0, 1. (34)

Corollary 2 indicates that, when the number c of compromised
sensors is unknown, as long as we choose r such that r ≤ m − c,
the system performance has a lower bound. Moreover, if we
know the number c, the following Nash equilibrium is obtained.

Corollary 3: By choosing r = m − c, VSPRT detection strat-
egy f ∗ � f (m − c) and flip-attack strategy g∗ form a Nash
equilibrium pair, i.e., for any admissible strategy f and g, the
following holds:

ρθθθ ( f , g∗) ≤ ρθθθ ( f ∗, g∗) ≤ ρθθθ ( f ∗, g), (35)

where

ρθθθ ( f ∗, g∗) = (m − 2c) · Dθθθ , θθθ = 0, 1. (36)

proof of Corollaries 2 and 3We consider the case whereθθθ = 1.
It can be proved similarly when θθθ = 0. According to Theorem
3, one obtains

E
g
1[τ (r)] ≤ | log α|

(r − c)D1
+ O

(√
| log α|

)
.

Thus,

ρ1( f (r), g) = lim
α,β→0

| log α|
E

g
1[τ (r)]

≥ (r − c)D1, (37)

and Corollary 2 is obtained. According to Theorem 2, one
obtains

ρ1( f , g∗) = lim
α,β→0

| log α|
E

g∗
1 [T ]

≤ (m − 2c)D1. (38)

Letting r = m − c in (37), and combing it with (38) lead to

ρ1( f , g∗) ≤ (m − 2c)D1 ≤ ρ1( f ∗, g).

Plugging in f = f ∗ and g = g∗ in (37) and (38) results in (m −
2c)D1 ≤ ρ1( f ∗, g∗) ≤ (m − 2c)D1. The proof of Corollary 3 is
thus accomplished. �

Since the attacker’s and the detector’s policy set are not
compact, the Nash equilibrium pair does not necessarily exist.
Corollary 3 is of significance because it proves the existence
of such pair. If we define the worst performance among all
possible attacks as ρ̃θθθ ( f ) = infg ρθθθ ( f , g), inequalities in The-
orem 2 imply ρ̃θθθ ( f ) ≤ (m − 2c)Dθθθ holds for all admissible
f . Combining it with the second inequality in (35) leads to
ρ̃θθθ ( f ∗) = (m − 2c)Dθθθ , i.e., the VSPRT scheme f ∗ achieves the
performance upper bound and is optimal among all possible
f . Notice that the optimality is defined against all admissible
attacks. The introduced flip-attack strategy is one of the attack
strategies that achieve the performance bound.
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Remark 5: Noticing that flip-attack only requires observa-
tions in O0 (when θθθ = 0) or O1 (when θθθ = 0), the flip-attacker
belongs to the category of weak attacker (recalling definition in
Assumption 4) since it does not need to know observations from
honest sensors inS \ (O0 ∪ O1). In other words, the information
of a weak attacker is sufficient to support the attack that causes
the worst performance, and knowing more observations from
honest sensors cannot enable the strong attacker to incur further
performance loss.

In the next section, we generalize VSPRT in fully-distributed
scenario and prove that the optimality and the resiliency are
preserved.

V. FULLY DISTRIBUTED VOTING SCHEME

In this section, we consider the scenario where the sensor net-
work adopts a peer-to-peer local information exchange scheme,
and there does not exist a fusion center. We model the network
topology as a digraph where the directed edges represent com-
munication channels. We propose a fully-distributed detection
scheme in this network where every sensor makes decision based
on local observations and information shared from its neighbors.
It is named as distributed voting SPRT (DVSPRT), and we prove
that this scheme has the same asymptotic performance as VSPRT
both in the presence and in the absence of attack.

We assume the model of the sensor network is a directed graph
G = (V, E ), where V is the set of nodes (sensors) with |V| = m.
Edge set E is the set of links or communication channels among
sensors: (i, j) ∈ E represents that sensor i can send information
to j. Define the number of communication links as M � |E |. The
(incoming) neighborhood set N j of sensor j is defined as all the
sensors that can send messages to j, i.e. N j � {i|(i, j) ∈ E}.
Denote (A)i j as the element at i-th row j-th column of matrix A.
Define adjacency matrix of sensor network as A, with (A)i j = 1
if (i, j) ∈ E and (A)i j = 0 otherwise. The distance from vertex
i to j (i �= j) is the shortest length of path that starts from i and
ends in j:

dis(i, j) � min
n∈Z+

{n|(An)i j = 1}.

Let dis(i, i) = 0 for each i ∈ V . If (An)i j = 0 for all positive
integer n, i.e., there does not exist a path from i to j, the distance
is defined as dis(i, j) = ∞. Define the diameter of a digraph G
as

dia G � max
i, j∈V

dis(i, j).

We say that G is strongly connected if dia G < ∞.

A. Distributed Voting SPRT

Distributed voting SPRT (DVSPRT) is based on single sen-
sor SPRT and distributed votes propagation. The single sensor
SPRT is the same as in VSPRT scheme and we concentrate
on the voting propagation process. In fully-distributed scenario,
every sensor maintains a transcript of vote list that records the
source and type of the votes currently known. Define the set of
vote list known at time k by sensor i as 
i(k) ⊆ {−m,−m +
1, . . . ,−1, 1, 2, . . . , m}, which is initialized as empty set, i.e.,

Algorithm 1: DVSPRT at sensor i.
1: Initialize 
i(0) := ∅, fi,0(r) = continue, k := 0.
2: while fi,k (r) = continue do
3: Calculate Si(k) according to (7).
4: Update local vote set 
i(k) according to (39).
5: Make decision according to (42).
6: k := k + 1.
7: end while


i(0) = ∅. Recalling the definition of stopping times τ+
i and

τ−
i in (9) and (10), the vote list is updated at time k as:


i(k)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩


i(k − 1)
⋃{⋃

j∈Ni

 j (k − 1)

}⋃{+i}, k = τ+
i ,


i(k − 1)
⋃{⋃

j∈Ni

 j (k − 1)

}⋃{−i}, k = τ−
i ,


i(k − 1)
⋃{⋃

j∈Ni

 j (k − 1)

}
, otherwise.

(39)

Define the time that sensor i collects at least r positive (negative)
votes as

T +
i (r) � inf

k∈Z+

{
k :
∣∣
i(k) ∩ Z

+∣∣ ≥ r
}
, (40)

T −
i (r) � inf

k∈Z+

{
k :
∣∣
i(k) ∩ Z

−∣∣ ≥ r
}
, (41)

where Z
+ (Z−) is the set of strictly positive (strictly negative)

integers. The final decision at sensor i is made once there are r
votes supporting the same hypothesis in set 
i(k):

fi,k (r) =
⎧⎨
⎩

0, k = T −
i (r) ≤ T +

i (r)
1, k = T +

i (r) < T −
i (r)

continue, k < min{T +
i (r), T −

i (r)}
. (42)

The DVSPRT scheme based on local information at sensor i is
defined as fi(r) � { fi,k (r)}∞k=1. The stopping time of fi(r) is

Ti(r) � min{T +
i (r), T −

i (r)}. (43)

The DVSPRT algorithm at sensor i is presented in Algorithm 1.
The vote list 
i is changed only when sensor i itself reports a

vote (at time τ+
i , τ−

i ) or its neighbors’ sets are changed. There-
fore, the updating equation (39) can be designed as event-based,
i.e., update the set 
i only when k = τ+

i or k = τ−
i or when its

neighbors’ sets 
 j ( j ∈ Ni) are updated at last time step. By
this design, the number of messages that travel in the network is
no larger than 2m · M (every link at most transmits 2˜m votes).
Define the message complexity as the amount of messages trav-
eling through graph edges. The message complexity of DVSPRT
is O(mM ), which is independent of α, β, h0, h1 and expected
delay Eθθθ [T ]. This merit attributes to the sparsity of the votes. In
comparison, message complexity of most of consensus-based
algorithms (e.g. [11], [14]) scales linearly with respect to de-
tection time, i.e., the message complexity is O(mMT ). As error
probabilities α and β approach zero, the message number of
these algorithms goes to infinity while the message number of
our proposed scheme is bounded.
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B. Performance Analysis

DVSPRT differs from VSPRT in that the vote-counting proce-
dure of DVSPRT is carried out in a decentralized manner. In the
following, we first focus on the delay caused by distributed vote
counting and prove that the delay is bounded by the diameter of
the network topology graph.

Lemma 1: For arbitrary r satisfying 1 ≤ r ≤ m and arbitrary
admissible attack g, the stopping time Ti(r) of DVSPRT and the
stopping time τ (r) of VSPRT satisfy

max
i∈S

Ti(r) − τ (r) ≤ dia G. (44)

Remark 6: The diameter of the graph is used to bound the
maximum time that a vote reaches all the other sensor nodes
in G (also know as flooding time in a graph). According to the
information transmission protocol defined in (39), the difference
between delay of distributed and centralized vote-counting is
upper bounded by the maximum flooding time, i.e., dia G.

Proof: Define the oracle voting list 
 which includes the
votes immediately after it is generated, i.e., at time k the set
is


(k) �
⋃
i∈S


i(k). (45)

According to the vote transmission mechanism (39), a vote
travels one path length every time step and the following holds:


i(k + dia G) ⊇ 
(k). (46)

Therefore, the following holds for arbitrary i, r and Hθθθ :

T +
i (r) = inf

k∈Z+

{
k : |
i(k)

⋂
Z

+| ≥ r
}

≤ inf
k∈Z+

{
k : |
(k)

⋂
Z

+| ≥ r
}

+ dia G = τ+(r) + dia G.

Similarly, one obtains T −
i (r) ≤ τ−(r) + dia G. Combining the

results leads to

min{T +
i (r), T −

i (r)} ≤ min{τ+(r), τ−(r)} + dia G, ∀i ∈ S.

Recalling the definition of Ti(r) and τ (r) in (43) and (15),
inequality (44) holds for arbitrary i, r and arbitrary hypothesis
Hθθθ . �

Based on Lemma 1, one obtains the following upper bound.
Theorem 4: For arbitrary sensor i and r satisfying m/2 < r ≤

m, in the presence of any admissible attack g on any set C with
0 ≤ |C| < m/2, the stopping times of DVSPRT and VSPRT with
the same error probability constraints α, β satisfy

t g,C
1,γ

(
T +

i (r)
) ≤ t g,C

1,γ

(
τ+(r)

)+ dia G, (47)

t g,C
0,γ

(
T −

i (r)
) ≤ t g,C

0,γ

(
τ−(r)

)+ dia G. (48)

Remark 7: The result includes the case of |C| = 0, i.e., there
is no attack.

As shown in Theorem 4, DVSPRT inherits the performance of
VSPRT in the absence of attack (Corollary 1) and in the presence
of attack (Corollary 3), which is summarized in the following
corollary. The corresponding proof is in Appendix XV.

TABLE I
TABLE OF STOPPING TIME NOTATIONS

Corollary 4: Assume G is strongly connected. Let m/2 <

r ≤ m, for abtrary i ∈ S , in the absence of attack, the expected
delays of DVSPRT satisfy:

E0[Ti(r)] ≤ | log β|
rD0

+ O
(√

| log β|
)

, (49)

E1[Ti(r)] ≤ | log α|
rD1

+ O
(√

| log α|
)

. (50)

Therefore, DVSPRT is of order-1 optimal in the absence of
attack. For any admissible attack strategy g, the expected delays
of DVSPRT satisfy:

E
g
0[Ti(r)] ≤ | log β|

(r − c)D0
+ O

(√
| log β|

)
, (51)

E
g
1[Ti(r)] ≤ | log α|

(r − c)D1
+ O

(√
| log α|

)
, (52)

where c is the number of compromised sensors.
DVSPRT has the same asymptotic performance as VSPRT

in both scenarios (with and without attack). On the one hand,
DVSPRT is order-1 optimal in the absence of attack. This implies
generalizing our proposed scheme to fully-distributed scenario
does not pay extra price (asymptotically). On the other hand,
in the presence of attack, DVSPRT inherits the performance in
Corollaries 2 and 3. In other words, DVSPRT forms a Nash
equilibrium with flip-attack strategy g∗, and achieves the per-
formance bound in Theorem 2 among all possible detection
strategies.

The optimality property of DVSPRT in absence of attack is
significant for the study of full-distributed detection schemes.
Notice that other fully-distributed detection schemes may not
necessarily be order-1 optimal, e.g., the consensus-innovation
SPRT (CISPRT) proposed in [27]. According to [28], CISPRT
is order-1 optimal if and only if the topology graph G is fully-
connected, i.e., each sensor can directly send messages to all
other sensors. In contrast, our proposed DVSPRT is order-1
optimal as long as G is connected, which is much weaker than
the fully-connectivity.

We list the stopping time notations in Table I for reference.
Stopping time τ is used in single sensor and fusion center context
while T is used in fully-distributed context.
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C. resiliency Under Communication Manipulation
and Link Failure

In the previous sections, we consider the scenario where the at-
tacker only manipulates the observations while communication
between sensors is not influenced. However, the communication
channels are crucial for fully-distributed algorithms and may be
weak points of the system. We show that our proposed scheme is
resilient against communication manipulation and link failure in
this subsection. We first provide the solution to communication
manipulation. Suppose that the attacker can manipulate the vote
list 
i(k) at each compromised senor i ∈ C. In this case, besides
voting for wrong hypothesis, the corrupted sensor can also cast
fake votes by impersonating honest sensors. In the presence of
such an attacker, every sensor needs to validate whether votes in
neighbors’ vote list are real ones collected from honest sensors’
local votes or impostor ones from the attacker. The problem can
be solved by implementing digital signature6 on each vote, i.e.,
every vote is signed by the sensor who casts it, and every sensor
is able to authenticate the signature. In this case, we have the
following corollary whose proof is in Appendix XVII.

Corollary 5: Suppose that besides observation manipulation,
the malicious adversary can also manipulate the vote list 
i.
In presence of such attack g on arbitrary set C with |C| = c, if
G is (c + 1)-vertex connected,7 the asymptotic performance of
DVSPRT with digital signature is given by (51) and (52) for
arbitrary honest sensor i ∈ S \ C.

According to Corollrary 5, by filtering out fake votes using
digital signature, the honest sensors can achieve performance
bound (r − c)Dθθθ based on (51) and (52).

Remark 8: In Lamport’s early study of Byzantine gener-
als [29], he analyzed different solutions under Byzantine agents
with oral messages and written (signed) messages. An oral
message is a piece of information whose contents are completely
under the control of the transponder. A written message is a
piece of information whose authenticity could be verified by
others, and the intermediary can not manipulate the information.
In Subsection V-A, sharing integers from 
i(k) with neighbors
can be interpreted as passing oral messages, and the signed votes
in this subsection are written messages.

Besides the case where communication is under the manip-
ulation of a malicious adversary, sensor communications also
fail randomly because of noise, congestion, and internal errors.
We consider the problem where communication channels fail
at random times. It is conventional to model the graph with
Bernoulli random topology, e.g., [9], [30].

In the random topology model, the communication channel
(i, j) ∈ E fail at random times. The probability that edge (i, j)
is online at arbitrary time k is pi j (0 ≤ pi j ≤ 1). We assume that
for distinct pairs of edges, the corresponding Bernoulli process
is statistically independent. Let us collect the probabilities as
a matrix P with its entry on i-th row, j-th column equals to

6A digital signature is a mathematical scheme for verifying the authenticity of
digital messages or documents. Some examples of the digital signature algorithm
are RSA, DSA, and ECDSA.

7Strongly connected digraph G is said to be κ-vertex connected if any removal
of κ − 1 vertices leaves a strongly connected digraph.

pi j when (i, j) ∈ E and equals to 0 when (i, j) /∈ E . Define the
probability measure with respect to such a Bernoulli random
topology under true hypothesis θθθ as PP

θθθ . Corrsponding expecta-
tion is denoted as EP

θθθ . Define a graph G = (V, E ) with edge set
E defined as the set of all edges with positive link probability:
E � {(i, j) ∈ E |pi j > 0}. We have the following assumption on
G.

Assumption 5: G is strongly connected.
In order to quantify the delay caused by random link failure,

we define the weighted distance in the graph following [31].
Define a directed path w(i, j) from sensor node i to j as an
alternating sequence of vertices and edges:

w(i, j) = {i = v0, e1, v1, . . . , en, vn = j},
such that for l = 1, . . . , n, the vertices vl−1 and vl are the
endpoints of edge el , i.e., el = (vl−1, vl ). Define the set of all
the paths from i to j in G as W (i, j). The weighted distance
between distinct sensor nodes i0 and j0 is defined as

disP(i0, j0) = min
w(i0, j0 )∈W (i0, j0 )

∑
(i, j)∈w(i0, j0 )

1

pi j
. (53)

According to Assumption 5, for every pair of nodes i and j
in graph G, disP(i, j) < ∞. In this random topology network,
the expected detection delay of DVSPRT is quantified in the
following theorem whose proof is provided in Appendix XIX.

Theorem 5: Given P satisfying Assumption 5, under same
error probability constraints α, β, the difference of expected
delay of DVSPRT in perfect network and in random failure
network parameterized by P is bounded, i.e., for all sensor i,
all possible r and hypothesis θθθ , we have

0 ≤ E
P
θθθ [Ti(r)] − Eθθθ [Ti(r)] ≤ max

j∈V
disP( j, i). (54)

Theorem 5 indicates that for each decider sensor i, the ex-
pected delay introduced by random topology failure is bounded
by a constant term maxi, j∈V disP( j, i). Combining (54) with (49)
and (50), one obtains

lim
α,β→0

E
P
θθθ [Ti(m)]

Eθθθ [T ∗(m)]
= 1, θθθ = 0, 1, (55)

i.e., DVSPRT is still order-1 optimal when the communication
channels fail at random times as long as Assumption 5 is satis-
fied. In comparison, the efficiency of consensus algorithms relies
on link probability P, e.g., [9], [32], and their efficiency (conver-
gence rate) in random graph is strictly less than the efficiency
with perfect communication for certain class of P even when
G is strongly connected. Considering that the connectivity of G
is a very weak assumption, DVSPRT has resiliency advantage
over consensus-based algorithms under random link failure by
taking advantage of the low-communication design of the voting
scheme.

VI. SIMULATION

In this subsection, we assume that the probability distribution
of two hypotheses are Gaussian distributions. The background
distributions of null hypothesis and alternative hypothesis are
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Fig. 3. CDF of random stopping time of VSPRT with r = m.

Fig. 4. Performance of VSPRT with m = 10 sensors and different r in the
absence of attack.

H0 : N (−1, 1) and H1 : N (1, 1). In this case, the K–L diver-
gences are D0 = D1 = 2, and variances are V0 = V1 = 4.

We first evaluate the performance of VSPRT in the absence
of attack, i.e., validate Theorem 1 and Corollary 1 by simula-
tion. In Fig. 3, we choose four different m (m = 2, 10, 40100)
with thresholds h0 = h1 = 10000. The empirical distribution

function of normalized stopping time (τ−(m) − h0
D0

)/
√

V0

D3
0
· h0

with 100 samples for each value of m is illustrated in Fig. 3.
The dashed lines are the corresponding theoretical cumulative
distribution function [�(·)]m. Fig. 3 shows that the empirical dis-
tribution corresponds to the theoretical distribution [�(·)]m. In
order to simulate the error probability with higher accuracy, the
simulation experiments in the following adopt the importance
sampling approach [33]. To validate the result in Corollary 1,
the simulation is performed with m = 10 sensors and h0 = h1.
The values of the thresholds are chosen in an increasing value
list ranging from 50 to 1000. We calculate the expected delay
E0[τ (r)], the error probability e1 and the corresponding con-
straint β. The result is shown in Fig. 4.

As shown in Fig. 4, the absolute value of slope of every line
is approximately 2r (as denoted by black thin solid line), which
is in accordance with our asymptotic result | log β|

E0[τ (r)] ∼ rD as
α, β→0. The probability constraint e1 ≤ β is satisfied (asterisk
mark is above the circle mark for every line). Moreover, the
gap between e1 and β is reasonably small, which corresponds

Fig. 5. Topology Graph of sensor network used for simulation in fully-
distributed case.

Fig. 6. Performance of equilibrium strategy pair (f ∗, g∗ ) when m = 10, r =
m − c with different c. The expected delay is Eg∗

0 [τ (m − c)] for VSPRT and is

E
g∗
0 [T1(m − c)] for DVSPRT.

Fig. 7. Performance of distributed detection schemes with fusion center where
m = 10.

to the theory. The topology graph in fully-distributed scenario
simulation ( Fig. 6 and Fig. 8) is denoted in Fig. 5.

In the presence of attack, we validate Corollary 3 by showing
that VSPRT and DVSPRT achieves the performance bound
under attack. In Fig. 6, we choose m = 10 and r = m − c. The
number of compromised sensors is chosen as c = 0, 1, 2, 3 and
the corresponding compromised sensor sets are C = ∅, C =
{1}, C = {1, 2}, and C = {1, 2, 10} respectively. We use the local
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Fig. 8. Performance of fully-distributed detection schemes with m = 10 sen-
sors and network topology G in Fig. 5.

information at sensor 1 for final decision. As shown in Fig. 6,
the absolute value of slope of every line is close to 2(m − 2c)
(as denoted as black thin line), which validates Corollary 3.

In order to evaluate the efficiency of our proposed detection
scheme, we compare it with several detection schemes in lit-
erature in the absence of attack. The following algorithms are
simulated with 10 sensors, and the fully-distributed algorithms
in Fig. 8 adopt the network topology in Fig. 5. The parameter
r in our proposed VSPRT and DVSPRT is chosen as r = 10.
Fig. 7 compares our proposed VSPRT with other schemes in
fusion center formulation. The simulation includes the Decen-
tralized SPRT (D-SPRT) proposed in [19], [34], Dual-SPRT and
SPRT-CSPRT proposed in [20]. Moreover, the order-2 optimal
Centralized SPRT (CSPRT, see e.g., [22], [27]) is also evaluated
as a benchmark of optimality, which is conventional in literature
(e.g., [20], [22]). In Fig. 7, the slope of every line represents the
decrease rate of logarithm error probability with respect to ex-
pected delay, i.e., the efficiency of the corresponding algorithm.
The maximum magnitude of the slope equals to mD1 = 20,
which corresponds to that of the black thin line (theoretical
optimal). The displayed schemes are all at least order-1 optimal.
The decrease rates (slopes) are almost the same, which means
VSPRT has almost the same finite time efficiency as other
schemes in absence of attacks.

Fig. 8 compares our proposed DVSPRT with other
schemes in fully-distributed formulation. The simulation cov-
ers sample-dissemination-based distributed SPRT (SD-DSPRT)
and consensus-algorithm-based distributed SPRT (CA-DSPRT)
proposed in [22]. We also simulate our DVSPRT scheme with
random link failure. In the random topology simulation, the link
probability pi j of every directed edge in the graph is generated
randomly from the uniform distribution on open interval (0,1).
As shown in Fig. 8, the slope of DVSPRT is close to that of
other schemes and the theoretical optimal. Thus, the finite time
performance of DVSPRT in the absence of attack is validated.
Moreover, the performance of DVSPRT with random link failure
is asymptotically the same as DVSPRT with perfect communi-
cation.

VII. CONCLUSION

This paper studies the sequential binary hypothesis testing
problem with Byzantine agents in both fusion center and fully-
distributed formulations. The performance metric is formu-
lated as the detection delay with type-I, type-II error proba-
bility constraints. We investigate the asymptotic performance
as error probabilities approach zero. In the absence of attack,
the definition of optimality and the theoretical optimal of a
detection strategy are introduced in Section II. We formulate
the VSPRT scheme in the fusion center formulation and the
DVSPRT scheme in the fully-distributed formulation based on
single sensor SPRT and a decide-by-vote mechanism.

We prove that our proposed detection schemes VSPRT and
DVSPRT are order-1 optimal with voting parameter r = m in
the absence of attack. Moreover, in the presence of Byzantine
attacks, they both achieve the performance bound considering
the worst-case performance, and each of them forms a Nash
equilibrium pair with the flip-attack when choosing r = m − c.
The fact that the DVSPRT scheme inherits the performance
of VSPRT indicates that there is “no price of decentraliza-
tion” of our fully-distributed algorithm. Moreover, we prove
that DVSPRT still holds order-1 optimality under random link
failure with a mild assumption. The main results are verified by
numerical simulations.

Even though our proposed schemes can achieve the perfor-
mance bound in the presence of attack by choosing r = m − c,
this parameter choice does not lead to the most efficient algo-
rithm when there is no attack. Therefore, it can be the object
of future work to design a detection scheme that can achieve
optimality simultaneously in both scenarios (with and without
attack).

APPENDIX A

CENTRAL LIMIT THEOREM OF FIRST PASSAGE TIME

Assume that {x(n)}n≥1 is a sequence of i.i.d. random vari-
ables with probability measure Px(·) and expectation Ex(·). The
expectation and variance of x(1) are denoted as

μx � Ex[x(1)], Vx � Ex[(x(1) − μx )2]. (56)

Partial sum of x(n) is defined as W (n) �
∑n

k=1 x(k). Denote the
first passage time of a positive threshold h as

τ+(h) � inf{n ∈ Z
+|W (n) > h}. (57)

The following Central Limit Theorem (CLT) of positive first
passage time is from Allan Gut [35] Theorem 5.2 and Remark
5.3 in Chapter 2. The symmetrical result of negative first passage
time can be easily derived from it.

Lemma 2 (Central Limit Theorem of first passage time):
Assume 0 < μx < ∞ and Vx < ∞, then the following holds:

τ+(h) − h
μx√

Vx

μ3
x

· h

d−→ N (0, 1) as h→∞, (58)

where
d−→ means convergence in distribution, and N (0, 1) is the

standard normal distribution.
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APPENDIX B

PROOF OF THEOREM 1 AND COROLLARY 1

Proof of Theorem 1: We prove (18), and (17) could be handled
similarly. Define a normalized random variable

Z1(h1) = τ+
1 (h1) − h1

D1√
V1

D3
1
· h1

.

According to Lemma 2, we have Z1(h1)
d−→ N (0, 1) as h1→∞.

According to definition in (16), one obtains

t1,γ

(
τ+(r)

)
� inf

{
t
∣∣P1(τ+(r) ≤ t ) ≥ γ

}
.

For better readability, we denote t1,γ (τ+(r)) with t1,γ for the
rest of this subsection. As the probability P1(τ+(r) ≤ t ) is non-
decreasing with respect to t , one obtains

P1[τ+(r) ≤ t1,γ ] = γ .

Event {τ+(r) ≤ t1,γ } implies that there are r sensors that already
sent positive votes at time t1,γ . Assuming the set of sensors that
contribute to these r votes as R = {i1, i2, . . . , ir}, one obtains

γ = P1[τ+(r) ≤ t1,γ ]

= P1

[
max
i∈R

τ+
i ≤ t1,γ

]
≥ (

P1[τ+
1 ≤ t1,γ ]

)r
.

The last inequality reduces to equality when r = m. One obtains
P1[τ+

1 ≤ t1,γ ] ≤ γ
1
r or

P1

⎡
⎣Z1(h1) ≤ t1,γ − h1

D1√
V1

D3
1
· h1

⎤
⎦ ≤ γ

1
r .

Because Z1(h1)
d−→ N (0, 1), we have

t1,γ − h1
D1√

V1

D3
1
· h1

≤ �−1(γ
1
r ) + o(1) as h1→∞, (59)

or equivalently

t1,γ (τ+(r)) ≤ h1

D1
+
√

V1

D3
1

· h1 �−1(γ
1
r ) + o

(√
h1

)
. (60)

The inequality in (60) becomes equality when r = m.
We proceed to handle the error probabilities and first prove

that the error probability constraints e0 ≤ α and e1 ≤ β are
satisfied by choosing thresholds h0, h1 as in (8). Let us define
the following events for a single sensor i:

E −
i �

{
inf

k∈Z+
Si(k) ≤ −h0

}
, E +

i �
{

sup
k∈Z+

Si(k) ≥ h1

}
.

Notice that event E −
i implies that sensor i reports a wrong

vote when the true hypothesis is H1. Event {τ−(r) < τ+(r)}
implies that there exists an index set R � {i1, i2, . . . , ir} ⊆ S
such that for every entry i in setR, event E −

i occurs. Considering
the statistical independence of every cumulative log-likelihood

ratio, one obtains

P1[τ−(r) < τ+(r)]

≤
∑
|R|=r

∏
i∈R

P1
(
E −

i

) =
(

m

r

) r∏
i=1

P1
(
E −

i

)
.

Then the error probability with θθθ = 1 satisfies

e1 ≤
(

m

r

) (
P1[E −

1 ]
)r ≤

(
m

r

)
exp(−rh0), (61)

and the last inequality holds because we have the following
characteristics of single sensor SPRT (see e.g. [36]):

P0[E +
i ] ≤ (1 − P1[E −

i ]) · exp(−h1) ≤ exp(−h1),

P1[E −
i ] ≤ (1 − P0[E +

i ]) · exp(−h0) ≤ exp(−h0).

Substituting h0 with
− log β+log (m

r )
r in (61) leads to e1 ≤ β. Simi-

larly, one can prove e0 ≤ α.
Recalling the choices of h0, h1 in (8), one obtains h1 ∼ | log α|

r .
Replacing h1 in (60) with | log α|

r leads to (18). �
Proof of Corollary 1: According to Theorem 1, one obtains

t1,γ (τ+(m)) − | log α|
mD1√

V1

mD3
1
· | log α|

= �−1(γ
1
r ) + o(1) as α→0.

This is equivalent to

τ+(m) − | log α|
mD1√

V1

mD3
1
| log α|

d−→ Nm(0, 1).

The other one could be proved similarly. We proceed to prove
(19), and (20) can be tackled in the same way.

It can be verified that the expectation of a random variable
with CDF [�(x)]m (m > 1) is strictly positive, i.e.,

E1

⎡
⎣τ+(m) − | log α|

mD1√
V1

mD3
1
| log α|

⎤
⎦ = E1

[
τ+(m)

]− | log α|
mD1√

V1

mD3
1
| log α|

= C(α) > 0,

where C(α) is a constant for each given α. Thus, one obtains

E1[τ (m)] ≤ E1[τ+(m)] ≤ | log α|
rD1

+ O
(√

| log α|
)

. (62)

�

APPENDIX C

PROOF OF THEOREM 3

Proof: We prove (32), and (31) could be dealt with similarly.
We claim that the following inequalities hold for arbitrary attack
g, arbitrary time t and same threshold h0, h1:

P
g
1[τ+(r − c) ≤ t] ≥ P1[τ+(r) ≤ t], (63)

P
g
0[τ−(r − c) ≤ t] ≥ P0[τ−(r) ≤ t], (64)

P
g
1[τ−(r) ≤ τ+(r)] ≤ P1[τ−(r − c) ≤ τ+(r − c)], (65)

P
g
0[τ+(r) ≤ τ−(r)] ≤ P0[τ+(r − c) ≤ τ−(r − c)]. (66)
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We prove (63) and (65). The other two can be proved in the same
way. For any time t , we have that {τ+(r) ≤ t} in the absence
of attack implies {τ+(r − c) ≤ t} under any admissible attack,
since the number of manipulated votes is at most c. Therefore,
inequality (63) holds. Similarly, for (65), event {τ−(r) ≤ τ+(r)}
under attack implies that at least r − c honest sensors have
reported votes for H1, which is equivalent to the occurrence
of event {τ−(r − c) ≤ τ+(r − c)} in the absence of attack. We
proceed to prove (32). Based on (60) and (63), one obtains

t g
1,γ

(
τ+(r)

) ≤ t1,γ

(
τ+(r + c)

)
≤ h1

D1
+
√

V1

D3
1

· h1 �−1(γ
1
m ) + o

(√
h1

)
. (67)

We proceed to prove that the probability constraints are satisfied.
According to (66), one obtains

eg
0 ≤ P0[τ+(r − c)

≤ τ−(r − c)] ≤
(

m

r − c

)
exp(−(r − c)h1),

where the last inequality comes from the symmetric result of
(61). Recalling the choice of h1 in (30), one concludes that the
error probability constraint eg

0 ≤ α is satisfied. Notice that the
choice of h1 in (30) leads to limα,β→0

| log α|
h1

≥ r − c. Therefore,

substituting h1 in (67) with | log α|
r−c will increase the right-hand-

side of (67), i.e.,

t g
1,γ

(
τ+(r)

) ≤ | log α|
(r − c)D1

+
√

V1| log α|
(r − c)D3

1

�−1(γ
1
m )

+ o
(√

| log α|
)

.

�

APPENDIX D

PROOF OF COROLLARY 4

Proof: According to (60) and Lemma 1, one obtains

E1[T +
i (r)] ≤ h1

rD1
+ O

(√
h1

)
+ dia G.

Recalling the definition in (45), one obtains 
i(k) ⊆ 
(k) for
arbitrary i ∈ S, k ∈ Z

+. Therefore, if sensor i is the decider
sensor, the error probability satisfies

e1 ≤ P1

(
∃k, |
i(k)

⋂
Z

−| ≥ r
)

≤ P1

(
∃k, |
(k)

⋂
Z

−| ≥ r
)

≤
(

m

r

) (
P1[E −

1 ]
)r ≤

(
m

r

)
exp(−rh0),

which coincides with (61). This means the error probability con-
straints of DVSPRT is satisfied. Recalling the choices of h0, h1

in (8), one obtains h1 ∼ | log α|
r . Replacing h1 with | log α|

r leads
to E1[Ti(r)] ≤ E1[T +

i (r)] ≤ | log α|
rD1

+ O(
√| log α|). Therefore,

(50) is proved, and the other one can be obtained in the same way.
We proceed to prove (52), and (51) can be dealt with similarly.

Based on Theorem 4, by taking maximum among all |C| = c,
one obtains

t g
1,γ

(
T +

i (r)
) ≤ t g

1,γ

(
τ+(r)

)+ dia G

≤ | log α|
(r − c)D1

+ �−1
(
γ

1
m

)√ V1| log α|
(r − c)D3

1

+ o
(√

| log α|
)

,

where the last inequality comes from (32) in Theorem 3. This
leads to

E
g
1[T +

i (r)] ≤ | log α|
(r − c)D1

+ O(
√

| log α|).

Recalling the definition of Ti(r) � min{T −
i (r), T +

i (r)}, we have
E

g
0[Ti(r)] ≤ E

g
0[T −

i (r)]. Therefore, (52) is proved. �

APPENDIX E

PROOF OF COROLLARY 5

Proof: We study the set 
i of arbitrary honest decider sensor
i ∈ S \ C. As G is (c + 1)-vertex connected, for arbitrary sensor
j, there is a path from j to i where all the intermediate vertices
are honest sensors. On the one hand, if arbitrary sensor j has cast
a vote, the signed vote will reach sensor i and be included in 
i

with delay bounded by dia G. On the other hand, if j has not cast
any vote, with the help of digital signature, vote of j will never be
included in 
i. Therefore, 
i(k) ⊆ 
(k) and 
i(k + dia G) ⊇

(k) still hold under communication manipulation. Recalling
the proof of Lemma 1, one obtains that the result (44) still holds
in this scenario. As a result, Theorem 4 and Corollary 4 still
hold, and thus (51) and (52) are obtained. �

APPENDIX F

PROOF OF THEOREM 5

Proof: The lower bound zero is trivial and we concentrate on
the upper bound. For a vote at sensor node i0, the time that it
reaches i1 is

∞∑
k=1

k(1 − pi0i1 )k−1 pi0i1 = 1

pi0i1

, 0 < pi0i1 ≤ 1.

For an arbitrary w(i0, in) = {i0, (i0, i1), i1, . . . , (in−1, in), in},
considering the statistical independence of the Bernoulli pro-
cess, the expected time that a vote travel from i0 to in in w(i0, in)
is
∑n−1

l=0 (1/pil il+1 ).Since in will receive a vote cast by i0 as soon as
there is a message passed through any path inW (i0, in), recalling
the definition in (53), the expected voting time lag from i0 to in
is less than or equals to disP(i0, in). Therefore, considering all
possible votes cast by any j ∈ V , we have for all r, θθθ satisfing
1 ≤ r ≤ m, θθθ = 0, 1,

E
P
θθθ [T +

i (r)] − Eθθθ [τ+(r)] ≤ max
j∈V

disP( j, i). (68)

Since the delay only depends on link probability P and holds
for different types of votes, (68) also holds for T −

i (r) and τ−(r).
Considering the definition that τ (r) = min{τ−(r), τ+(r)} and
Ti(r) = min{T −

i (r), T +
i (r)}, the second inequality in (54) is

obtained. �
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