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Abstract
We consider the problem of estimating the state of a time-invariant linear Gaus-
sian system in the presence of integrity attacks. The attacker can compromise p
out of m sensors, the set of which is fixed over time and unknown to the system
operator, and manipulate the measurements arbitrarily. Under the assumption
that the system is regular and system matrix A is non-singular, we propose a
secure estimation scheme that is resilient to p-sparse attack as long as the system
is 2p-sparse detectable, which achieves the fundamental limit of secure dynamic
estimation. In the absence of attack, the proposed estimation coincides with
Kalman estimation with a certain probability that can be adjusted to trade-off
between performance with and without attack. Furthermore, the detectability
condition checking in the designing phase and the estimation computing in the
online operating phase are both computationally efficient. Two numerical exam-
ples including the IEEE 68 bus test system are provided to corroborate the results
and illustrate the performance of the proposed estimator.
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1 INTRODUCTION

As the confluence of sensors, platforms, and networks increases, the already widespread applications of cyber-physical
system (CPS) and Internet of Things (IoT) are expected to continue to emerge and expand.1 They play an increasingly
important role in critical infrastructures and everyday life, while the cyber-security risks and attack surfaces are also
increasing.2 However, CPS is vulnerable to a variety of cyber attacks since it usually relies on remote sensing devices,
communication channels, and spatially distributed processors, which are prone to failures when exposed to uninten-
tional faults and malicious attacks. Failure of CPS may cause severe damage to industrial infrastructures, economic order,
and environmental systems, for example, the Stuxnet launched on Iran’s nuclear facilities,3 power blackouts in Ukraine,4
North America and Europe5 and so forth. The research community has recognized the importance of CPS security,
especially the design of secure detection, estimation, and control strategy.2

Recently, substantial research efforts have been devoted to secure state estimation against various types of attacks,
such as deception (integrity) attacks6,7 and denial-of-service (DoS) attacks.8,9 The integrity attacks focus on destructing
system data integrity by stealthily manipulating the transmitted data, whereas DoS attacks jeopardize the availability
of data resources by blocking the communication channels. A review of the secure estimation against various attacks
is referred to Reference 10. This article focuses on secure estimation against sparse integrity attack where an unknown
subset of sensors is compromised by the adversary. The measurements from those corrupted sensors can be manipulated
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arbitrarily by the adversary. In order to identify the sparse malicious sensors and mitigate the impact of manipulated
measurements, the main research paths include error correction approach based on compressed sensing and switching
estimation approach based on fault identification. The error correction approach usually takes measurements in a finite
time window and adapts a sparsity-inducing optimization to handle the outliers. For example, minimizing the 𝓁0 norm
or its convex relaxation 𝓁1 norm for lower computational complexity.11,12 Fawzi et al.11 derive the fundamental limit
for state reconstruction in the absence of noise and increase the number of correctable errors by state feedback. This
result is further generalized to the scenario where the set of attacked nodes can change over time in Reference 13. For
the scenario with bounded noise, Pajic et al.12 provides rigorous analytic bounds on the estimation errors for 𝓁0 and
𝓁1-based estimation procedures. Similarly, Shoukry and Tabuada14 adapt the 2-norm batch optimization approach for
state estimation and a customized gradient descent algorithm to solve it efficiently. These works provide fundamental
limits for static estimation against integrity attack, that is, proves that 2p-sparse observability is necessary for secure state
recovery against p compromised sensors. However, the sensory data out of the window are discarded in the finite time
window approach, which may cause performance degradation and estimation delay.

Another solution is the switching method, where the system operator switches between multiple estimate candi-
dates15-17 or sensor subset combinations18-21 based on the evaluation of their reliability by consistency checking or
malicious detection algorithms. Pasqualetti et al. propose a detection-and-switching mechanism22 for noise-free linear
system secure estimation, and the switching method is further studied in scenarios of bounded noise16 LTI systems, Gaus-
sian random noise19 LTI systems and multi-mode hybrid systems.17,23 However, the combinatorial number of possible
benign sensor sets poses severe challenges for storage and online computation. For example, if there are p corrupted sen-
sors out of m sensors. The number of all possible benign sensor combinations is

(
m

m−p

)
, which proliferates rapidly as

either m or p grows. In view of this problem, researchers proposed various methods to reduce the combinatorial com-
plexity. As far as we know, the main attempts can be roughly classified into three categories, the sequential switching
method, the set cover approach, and the satisfiability modulo theory approach. An et al.20 propose a sequential approach
where the estimator switches among an ordered list of all possible benign sensor combinations. They proved that the
switching mechanism is guaranteed to stop at a benign combination within a finite time. Moreover, the algorithm only
needs to maintain one combination at each time index, reducing the online computation complexity significantly, with
the cost that the delay before hitting a benign set may be considerable. The set cover approach by Lu et al.21 reduces the
number of candidates by searching for smaller benign sensor sets with cardinality m − 2p, which is generated by solving
the set cover problem. It is proved that the number of candidates is at least reduced by half. With the help of the satis-
fiability modulo theory, Mishra et al.19 reduce the search space by pruning in the process of malicious sensor detection.
It is proved that the number of iterations is at least reduced to

(
m

m−2p+1

)
. This reduction is significant when p is nearly

half of m.
Different from the error correction or switching mechanism, our proposed method achieves secure estimation by

adapting the decomposition-fusion scheme proposed by Liu et al.,24 whose estimation scheme decomposes Kalman filters
into local estimators and recovers the state estimate by securely fusing the local estimates using a quadratic program-
ming problem with an 𝓁1 term to handle the sparse outliers. However, in the designing phase, the sufficient condition
for estimation resiliency is computationally hard to validate. Moreover, the sufficient condition has a gap from 2p-sparse
detectability, which is the fundamental limit16 for secure state estimation. Similar to Liu’s result,24 other results in the
literature either impose 2p-sparse observability conditions,14,18,19 or more restrictive conditions than 2p-sparse observabil-
ity,11,25 and the conditions are NP-hard to validate. In view of these problems, we pursue lower computational complexity
by analyzing the observability structure of local estimators under the assumption that the system is regular, which is
inspired by the work26 of Mao et al. With this assumption, the system observability structure is simple and the sparse
observability index can be calculated in polynomial time.

In summary, we focus on LTI systems with Gaussian noise and intend to propose an estimation scheme that provides
the following two contributions: (1) Most of the secure estimators in the literature are designed to work under 2p-sparse
observability or more restrictive conditions, while for dynamic estimation problem, the fundamental limit is the less
restrictive 2p-sparse detectability.16 Our proposed estimation scheme achieves this fundamental limit. (2) For general
system, computing the sparse observability/detectability is an NP-hard problem26 and thus validating the estimator secu-
rity is also NP-hard. Nevertheless, with the assumption that the system is regular, we achieve polynomial computation
complexity with respect to sensor number and system dimension.

Preliminary versions of some results have been presented in Reference 27. This article is significantly improved from
the previous work and has the following merits:
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• Theoretical achievability: The proposed estimator in this article is secure as long as the system is 2p-sparse
detectable, and this is proved to achieve the fundamental limit of secure dynamic estimation.

• Off-line computational complexity: Under the assumption that the system is regular and A is non-singular,
the calculation of sparse detectability index can be done within polynomial time w.r.t. sensor number and system
dimension.

• On-line computational complexity: The secure estimation can be obtained by solving a convex optimization
problem, which can be done efficiently by developed optimization algorithms and off-the-shelf solvers.

• Accuracy balancing between normal operation and under attack: The proposed estimator has a tuning param-
eter 𝛾 . This article proves that larger 𝛾 implies a larger probability of recovering the Kalman estimation in the absence
of attack (i.e., better performance without attack), and smaller 𝛾 implies smaller estimation error upper bound under
attack (i.e., better performance under attack). By setting proper 𝛾 , the system can achieve a better trade-off between
both scenarios.

The organization of this article is that, we introduce the problem formulation and preliminary results in Section 2,
where the problems of previous results in the literature are analyzed. Then, the main results of this article are
provided in Section 3 and collaborated by numerical simulations in Section 4. Section 5 finally concludes the
article.

Notations: The set of natural numbers (non-negative integers) is denoted as N. Cardinality of a set  is denoted as
||. A′ represents conjugate transpose of matrix A. Diagonal matrix with diagonal elements A1, … ,Ak is denoted as
diag(A1, … ,Ak). All-one vector with size m × 1 is denoted as 1m. In is the identity matrix with size n × n. Cm×n (Rm×n)
represents the set of complex (real) matrices with m rows and n columns. Rn×1 is also written as Rn. Cov(⋅) denotes the
covariance of a random vector. The ith entry of a vector x is represented by xi or [x]i. || ⋅ ||q represents the vector q-norm
or (induced) matrix q-norm which is clear according to the context. Matrix inequality A ≺ B means that B − A is positive
define.

2 PROBLEM FORMULATION AND LOCAL ESTIMATOR DESIGN

2.1 Secure dynamic state estimation

In this article, we consider the linear time-invariant system with Gaussian noise:

x(k + 1) = Ax(k) + Bu(k) + w(k), (1)

y(k) = Cx(k) + v(k) + a(k), (2)

where x(k) ∈ Rn is the system state, w(k) ∼ N(0,Q) and v(k) ∼ N(0,R) are i.i.d. Gaussian process noise and measurement
noise with zero mean and covariance matrix Q and R. Vector u(k) ∈ Rd is the external input. The vector y(k) ∈ Rm is
the collection of measurement from all m sensors, and ith entry yi(k) is the measurement from sensor i. The vector a(k)
denotes the bias injected by an adversary and ai(k) is the attack on sensor i. Define

z(k) = Cx(k) + v(k),

as the true measurements without the attack. The initial state x(0) ∼ N(0,Σ) is assumed to be zero mean Gaussian
and is independent from the process noise {w(k)}. We further introduce an assumption that is common in estimation
problems.

Assumption 1. The pair (A,C) is observable.

Notice that the above assumption is without loss of generality, as one can always perform a Kalman decomposition
and only consider the observable space. The secure dynamic estimation problem aims at recovering system state x(k) at
every time k based on all historical observations and inputs {y(t),u(t)|0 ≤ t ≤ k}, where y(k) has been partly manipulated
by the malicious attacker. It is conventional in the literature11,18 that the attacker can only compromise a fixed subset of
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sensors with known maximum cardinality. Denote the index set of all sensors as  ≜ {1, 2, … ,m}. Define the support of
vector a ∈ Rn as supp(a) ≜ {i|1 ≤ i ≤ n, ai ≠ 0} where ai is the ith entry of vector a. We have the following assumptions
on the malicious adversary.

Definition 1 (Sparse attack). The attack a(k) is a p-sparse attack if the vector sequence {a(k)}∞k=0 satisfy that, there exists
a time invariant index set  ⊆  with || = p such that

⋃∞
k=0supp {a(k)} = . The set of all admissible p-sparse attack is

defined as A(p).

Closely related to the sparse attack, we introduce the notion of sparse observability (detectability) that characterizes
the system observability (detectability) redundancy.

Definition 2 (Sparse observable/detectable). The sparse observability (detectability) index of system (1) and (2) is the
largest integer s such that system* (A,C⧵) is observable (detectable) for any sensor subset  with cardinality || = s.
When the sparse observability (detectability) index is s, we say that the system with pair (A,C) is s-sparse observable
(detectable).

Define y(k1 ∶ k2) as the sequence {y(k1), y(k1 + 1), … , y(k2)}. Similar notation is also applied on z(k),u(k). An esti-
mator is a sequence of mappings g = {gk}∞k=1 where gk is a mapping from all the historical outputs and inputs to a state
estimation at time k:

gk (y(0 ∶ k),u(0 ∶ k)) = x̂(k).

This is also written as gk(y,u) = x̂(k) in the following for notation simplicity. For linear Gaussian noise system, the esti-
mation is secure if the covariance of estimation error introduced by the attack is bounded by a constant term irrelevant
to the attack.

Definition 3 (Secure estimator). Define the estimation difference introduced by attack as

qk ≜ gk (z,u) − gk (y,u) = gk (z,u) − gk (z + a,u) .

The estimator is said to be secure against p-sparse attack if there exists a constant scalar† Mcov such that the following
holds:

sup
a∈A(p),k∈N

{Cov (qk)} ≺ McovIn,

where In is the n × n identity matrix.

If all sensors are benign, that is, a(k) = 0 for all k, the optimal state estimator is the classical Kalman filter:

x̂(k) = x̂(k|k − 1) + K(k)
[
y(k) − Cx̂(k|k − 1)

]
,

P(k) = P(k|k − 1) − K(k)CP(k|k − 1),

where

x̂(k|k − 1) = Ax̂(k − 1) + Bu(k),P(k|k − 1) = AP(k − 1)A′ + Q,

K(k) = P(k|k − 1)C′(CP(k|k − 1)C′ + R
)−1

,

with initial condition x̂(0| − 1) = 0, P(0| − 1) = Σ. It is well-known that for observable system, the estimation error
covariance matrices P(k) and the gain K(k) will converge to

P ≜ lim
k→∞

P(k), P+ = APA′ + Q, K ≜ P+C′(CP+C′ + R
)−1

.

*The matrix C⧵ represents the matrix composed of rows of C with row index in  ⧵ .
†The constant may change under different noise covariances Q,R and different system parameter A,C.
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F I G U R E 1 Information flow comparison between linear estimator and our design. (A) The information flow of a linear estimator (also
known as Luenberger observer). x̂(k) is the estimated system state at time k; (B) The information flow of our proposed estimation scheme.
x̃(k) is the proposed secure estimation at time k

Since typically the control system will be running for an extended period of time, we focus on the case where the Kalman
filter is in steady state, and thus the Kalman filter reduces to the following fixed-gain linear estimator:

x̂(k) = (I − KC) (Ax̂(k − 1) + Bu(k − 1)) + Ky(k). (3)

In order to better convey our design idea of secure estimators, we illustrate the information flow of Kalman
estimator (3) and our proposed secure estimator in Figure 1. As is shown in Figure 1A, for linear estimator (also
known as Luenberger observer), all measurements y(k) =

[
y′1(k), y′2(k), … , y′m(k)

]′ are first multiplied by a gain matrix
K to obtain Ky(k). The result Ky(k) =

∑m
i=1Kiyi(k) (Ki is ith column of K) can be seen as the linear fusion of mea-

surements y1(k), y2(k) … , ym(k), and then the linearly fused measurements are used for the estimation update. In
contrast, as shown in Figure 1B, our idea is to decompose the Kalman estimator into local linear estimators. Thus,
the impact of the corrupted sensor i is isolated within the local estimator 𝜁i, and other benign local estimators are not
affected by the attack. Then, by a secure fusion scheme, the partly corrupted local estimations are fused to a secure
estimation.

The following subsection introduces the details of local decomposition of Kalman estimator and previous results based
on the local estimator design.

2.2 Local decomposition of Kalman estimator

The following assumption is introduced to prevent system degradation.

Assumption 2. The matrix A is invertible; A − KCA has n distinct eigenvalues. Moreover, A − KCA and A do not share
any eigenvalues.

Remark 1. From a theoretical perspective, the assumption of invertibility of matrix A is used to analyze the observ-
ability structure and guarantees that row span of Gi equals to observable space of sensor i (denoted as Oi). If this
assumption does not hold, it happens that rowspan Gi ⊊ Oi, which brings sophisticated discussion, but the secure
estimation design may still exist. From a practical perspective, most discrete-time systems are derived from the dis-
cretization of a continuous-time system, thus Ad = exp(Ac ⋅ Δt), where Ad and Ac are the system matrices for the discrete
and continuous-time systems respectively and Δt is the sampling interval. In this case, the inversion of system matrix
A−1

d = exp(−Ac ⋅ Δt) is always well-defined.
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Remark 2. From a practical perspective, we can freely assign the poles of A − KCA by choosing a proper gain K since
(A,CA) is observable‡. Hence, A − KCA can satisfy Assumption 2 with a small estimation performance loss compared
to Kalman estimator. From a theoretical perspective, a potential method to remove the assumption that A − KCA has n
distinct eigenvalues is that we can use the Jordan canonical form of A − KCA instead of a diagonal matrix.24 However, for
notation simplicity and conclusion conciseness of this article, we leave it for future work.

Since A − KCA has distinct eigenvalues, it can be diagonalized as:

A − KCA = VΠV−1
, (4)

where Π is a diagonal matrix with the eigenvalues of A − KCA as diagonal entries. Denote these n eigenvalues (diagonal
entries) as 𝜋1, … , 𝜋n. We design a local estimator that only takes the observations from sensor i. The local estimation
𝜁i(k) is a n-dimensional vector initialized as 𝜁i(0) = 0 and satisfies the following dynamic:

𝜁i(k + 1) = Π𝜁i(k) + (Gi − 1nCi)Bu(k) + 1nyi(k + 1), (5)

where Ci is ith row of matrix C, and Gi is defined as the following n × n matrix:

Gi ≜

⎡
⎢⎢⎢⎣

CiA(A − 𝜋1I)−1

⋮

CiA(A − 𝜋nI)−1

⎤
⎥⎥⎥⎦
. (6)

Remark 3. Equation (5) is our design of the local estimator dynamics and also the definition of local estimation 𝜁i(k). It
is not a straightforward derivation from (4). The proof that this design can recover Kalman estimation x̂(k) by a linear
combination of 𝜁i(k) is shown in the previous work24 and thus not presented in this article due to space limits.

In the following, we claim that the local state 𝜁i(k) is actually estimating a linear transform of system state, that is,
𝜁i(k) is estimating Gix(k) and their difference 𝜖i(k) ≜ 𝜁i(k) − Gix(k) has bounded covariance.

Lemma 1. Define 𝜖i(k) ≜ 𝜁i(k) − Gix(k), then 𝜖i(k) satisfies the following dynamics:

𝜖i(k + 1) = Π𝜖i(k) − (Gi − 1nCi)w(k) + 1nvi(k + 1) + 1nai(k + 1). (7)

SinceΠ is a strictly stable matrix§ and w(k), vi(k) are zero mean Gaussian random variables, when the attack is absence, that
is, ai(k) = 0, the residue 𝜖i(k) is a Gaussian process with zero mean and bounded covariance. Thus, 𝜁i(k) is a stable estimate
of Gix(k).

Proof. According to the definition of 𝜁i(k + 1), one obtains

𝜖i(k + 1) = Π𝜁i(k) + 1n
[
Ci (Ax(k) + Bu(k) + w(k)) + vi(k + 1) + ai(k + 1)

]

− (Gi − 1nCi)Bu(k) − Gi (Ax(k) + Bu(k) + w(k))
= Π𝜁i(k) − (GiA − 1nCiA) x(k) − (Gi − 1nCi)w(k) + 1n (vi(k + 1) + ai(k + 1)) .

Since it has been proved in Reference 24 Corollary 1 that GiA − 1nCiA = ΠGi, one can verify that Equation (7) holds. ▪

Define Q̃ ∈ Rmn×mn as the covariance of noise term (Gi − 1nCi)w(k) − 1nvi(k + 1) for all i, that is,

Q̃ ≜ Cov
⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

G1 − 1nC1

⋮

Gm − 1nCm

⎤
⎥⎥⎥⎦

w(k)
⎞
⎟⎟⎟⎠
+ Cov

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

1nv1(k + 1)
⋮

1nvm(k + 1)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠
=
⎡
⎢⎢⎢⎣

G1 − 1nC1

⋮

Gm − 1nCm

⎤
⎥⎥⎥⎦

Q
⎡
⎢⎢⎢⎣

G1 − 1nC1

⋮

Gm − 1nCm

⎤
⎥⎥⎥⎦

′

+ R ⊗ 1n×n,

‡This comes from Assumption 1 and the invertibility of A.
§“Strictly stable” means all eigenvalues are within the open unit disk. Π is strictly stable since it shares same eigenvalues with A − KCA and the latter
is strictly stable.
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where ⊗ is the Kronecker product. Define Π̃ by stacking m blocks of Π on the diagonal:

Π̃ ≜
⎡
⎢⎢⎢⎣

Π
⋱

Π

⎤
⎥⎥⎥⎦
.

Therefore, in the absence of attack, the covariance of 𝜖(k) ≜
[
𝜖1(k)′, … , 𝜖m(k)′

]′ satisfies

Cov(𝜖(k + 1)) = Π̃ ⋅ Cov(𝜖(k)) ⋅ Π̃′ + Q̃.

Since Π̃ is a strictly stable matrix, the covariance of 𝜖(k) converges to the solution W̃ of the following Lyapunov
equation:

W̃ = Π̃W̃Π̃′ + Q̃.

The secure estimation can be recovered by the solution of the following optimization problem where 𝜁(k) ≜[
𝜁1(k)′, … , 𝜁m(k)′

]′ and G ≜
[
G′

1, … ,G′
m
]′.

minimize
x̌(k),𝜇(k),𝜈(k)

1
2
𝜇(k)′W̃−1

𝜇(k) + 𝛾||𝜈(k)||1 (8a)

subject to 𝜁(k) = Gx̌(k) + 𝜇(k) + 𝜈(k). (8b)

The parameter 𝛾 is a non-negative constant chosen by the system operator. The following theorem from Liu et al.24 proves
that the solution x̌(k) to problem (8) is a secure estimation under specific condition.

Theorem 1 (24). In the presence of p-sparse attack, the state estimation x̌(k) is secure if the following inequality holds for
all x ≠ 0, x ∈ Rn:

∑
i∈
‖Gix‖1 <

∑
i∈⧵

‖Gix‖1 , ∀  ⊂ , || ≤ p. (9)

2.3 Improvement upon previous results

In this subsection, we analyze condition (9) and present our improvement upon the results in Theorem 1. Even though
Theorem 1 establishes the sufficient condition of the estimation to be secure, this condition can be improved in the
following two aspects.

(1) Validating condition (9) is computationally hard. The computational complexity can be significantly reduced by
introducing the regularity assumption and further analysis on matrix Gi.

(2) Condition (9) does not achieve the fundamental limit. It is more restrictive than 2p-sparse observability and has
a gap from it, as proved in Lemma 2 in the following.

Lemma 2. For p > 0, condition (9) implies that system (A,C) is 2p-sparse observable and the reverse does not hold.

Proof. Define the observability matrix of system (A,Ci) as

Oi ≜
[

C′
i
|| (CiA)′ || · · · ||

(
CiAn−1)′]′.

Define the observable subspace of sensor i as

Oi ≜ rowspan(Oi) = span
(

C′
i , (CiA)′, … ,

(
CiAn−1)′)

.
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According to Cayley–Hamilton theorem, (A − 𝜋jI)−1 can be written as a polynomial of A. As a result, according to the
definition of Gi in (6), rowspan(Gi) ⊂ Oi. Define the following sensor index set with respect to vector x ∈ Rn as

O(x) ≜ {i ∈ |Oix ≠ 0}, G(x) ≜ {i ∈ |Gix ≠ 0}.

Then we have for arbitrary x ∈ Rn,G(x) ⊂ O(x).
We first prove condition (9)⇒ 2p-sparse observability by contradiction. If the system is not 2p-sparse observable,

according to the definition, there exists x0 ≠ 0 such that |G(x0)| ≤ |O(x0)| ≤ 2p. Define compromised sensor index set
0 as

0 ≜ arg max
||=p

∑
i∈
‖Gix0‖1 . (10)

As a result,

∑
i∈0

‖Gix0‖1 ≥
1
2
∑
i∈
‖Gix0‖1 ≥

∑
i∈⧵0

‖Gix0‖1 . (11)

This contradicts to condition (9).
We further prove that the reverse does not hold by giving a counter example. Suppose the system sparse observability

index is 2p. Then there exists x0 ∈ Rn
, x0 ≠ 0, such that |O(x0)| = 2p + 1. Consider the case where |G(x0)| ≤ 2p due to

A is not full-rank (this can be seen in the proof of Theorem 3 (2) in the Appendix). Define 0 same as in (10). As a result,
one obtains

∑
i∈0
‖Gix0‖1 ≥

∑
i∈⧵0

‖Gix0‖1. This means condition (9) is violated and 2p-sparse observability does not
necessarily imply condition (9). ▪

Lemma 2 proves that condition (9) is more restrictive than 2p-sparse observability and has a gap from it. Moreover,
2p-sparse observability implies 2p-sparse detectability while the reverse does not hold according to Definition 2. Our
proposed scheme in this article fills these gaps (seen in the following illustration). Moreover, the condition of 2p-sparse
detectability is the fundamental limit of this problem and will be proved in Theorem 7. The relationships between secure
conditions in related works are illustrated in the following.

Fundamental limit
↓

⇒ ⇒

Condition (9) 2p-sparse observability 2p-sparse detectability
⇍ ⇍

↑ ↑ ↑

Result in Liu et al.24 Result in our previous work27 Result in this article

In the following section, we propose a secure estimation scheme that improves the aforementioned points. Under
Assumption 2 and that the system is regular, the sufficient condition of the estimation to be secure is proved to be 2p-sparse
detectable, which is easily validated and achieves the fundamental limit of secure dynamic estimation.

3 SECURE ESTIMATION WITH SPARSE DETECTABILITY

In this section, we first present two facts about the observable subspace of sensor i. These results facilitate the construction
of the canonical form of matrix Gi. On the basis of this canonical form, we propose our secure estimator based on the
separated design of unstable modes and stable modes. We need the following notations throughout the article.

Define the observability matrix of system (A,Ci) as

Oi ≜
[

C′
i
|| (CiA)′ || · · · ||

(
CiAn−1)′]′.
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Define the observable subspace with respect to sensor i as

Oi ≜ rowspan(Oi) = span
(

C′
i , (CiA)′, … ,

(
CiAn−1)′)

,

where span() is the linear span of the vectors in set  , and rowspan(X) is the linear span of rows of matrix X .
Since we can perform invertible linear transformation T on state x and study the following system instead:

x(k) = Āx(k) + TBx(k) + Tw(k),
y(k) = CT−1x(k) + v(k) + a(k),

where Ā ≜ TAT−1 is similar to A and x = Tx, we can assume that A is in Jodan canonical form without loss of generality. In
the remaining of this section, we assume that A is in the Jordan canonical form and the eigenvalues are sorted (according
to its magnitude) in a descendant order from upper left to lower right on the diagonal.

3.1 Canonical form of Gi

Define set  ≜ {1, 2, … ,n} as the index of all states and recall that  ≜ {1, 2, … ,m} is the index of sensors. Define state
index set i ⊂  and sensor index set j ⊂  as:

i ≜
{

j ∈  | O(j)
i ≠ 0

}
, j ≜

{
i ∈  | O(j)

i ≠ 0
}
, (12)

where O(j)
i is the jth column of matrix Oi. Define ej as the n-dimensional canonical basis vector with 1 on the jth entry

and 0 on the other entries. We have the following theorem revealing the structure of observable subspace. The proof is
provided in Appendix A for legibility.

Theorem 2. The following two statements hold true.

(1) When all eigenvalues of A has geometric multiplicity 1,
{

ej, j ∈ i
}

is a group of canonical basis vector of linear
subspace Oi, that is, Oi = span

(
ej, j ∈ i

)
.

(2) If A is invertible, Oi = rowspan(Gi), where Gi is defined in (6).

In the following, we propose the canonical form of Gi under the following assumption and based on the results in
Theorem 2.

Assumption 3. All the unstable eigenvalues of A have geometric multiplicity 1, that is, the linear system is regular.

Recalling that A is in the Jordan canonical form and eigenvalues are sorted, then matrix A can be written as

A =

(
A1 0
0 A2

)
, (13)

where block A1 is composed of the Jordan blocks with unstable eigenvalues (|𝜆| ≥ 1) and A2 is composed of the Jordan
blocks with stable eigenvalues.

Denote the number of unstable eigenvalues of A (counted with repetition) as nu and number of stable eigenvalues as
ns. In order to analyze stable and unstable states separately with simple notation, we denote the index set of unstable state
entries of state as ≜ {1, 2, … ,nu} and index set of stable state entries as  ≜ {nu + 1, … ,n}. Notice that ∪  =  .
Furthermore, a matrix X can be divided vertically into two sub-matrices:

X =
[

X | X
]
,

where X is the matrix composed of first nu columns of matrix X (corresponding to unstable part) and X is composed
of last ns columns of X (corresponding to stable part).
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Based on these notations, the following theorem follows from Theorem 2.

Theorem 3. Assume system matrix A satisfies Assumption 3, then the following equation holds:

rowspan
(

Gi
)
= rowspan

(
Oi
)
= rowspan

(
Hi
)
, (14)

where Hi is the following n × nu matrix

Hi ≜

⎡
⎢⎢⎢⎢⎢⎣

I{1 ∈ i}
⋱

I{nu ∈ i}
0(n−nu)×nu

⎤
⎥⎥⎥⎥⎥⎦

, (15)

and I{j ∈ } is the indicator function that takes the value 1 when j ∈  is true and value 0 when j ∉  . Therefore, there exists
an invertible n × n matrix Pi such that PiGi = Hi .

Proof. Define transformation matrix

S ≜
[

Inu 0nu×ns

]
∈ R

nu×n
. (16)

Consider a linear system with system matrix SAS′ and output matrix CS′. As a result, the observability matrix of this
system with respect to sensor i is i . According to Assumption 2, SAS′ is invertible. Plugging this unstable subsystem
into Theorem 2 (2) leads to rowspan

(
Gi
)
= rowspan

(
Oi
)
. We proceed to prove rowspan

(
Oi
)
= rowspan

(
Hi
)
.

According to Assumption 3, all the eigenvalues of A1 have geometric multiplicity one. Plugging A1 into Theorem 2
(1), we have the following equation where eu

j is the nu-dimensional canonical basis vector with 1 on the jth entry and 0
on the other entries.

rowspan
(

Oi
)
= span

(
eu

j , j ∈ i ∩
)
= span

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

I{1 ∈ i}
⋱

I{nu ∈ i}

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠
= rowspan

(
Hi
)
.

As a result, rowspan
(

Oi
)
= rowspan

(
Hi
)

is proved. ▪

After transformation Pi, matrix Gi is transformed into canonical form Hi whose rows are either canonical basis vec-
tors or zero vectors. The non-zero entries of Hi records the state detectability of sensor i. Therefore, the sparse detectability
index can be directly obtained from matrix Hi , or equivalently from set i orj. We have the following theorem providing
a efficient way to calculate the sparse detectability index.

Theorem 4. Under Assumption 3, if  ≠ ø, the sparse detectability index s of system (A,C) can be calculated as:

s = min
j∈

||j|| − 1, (17)

where j is defined in (12).

Remark 4. If = ø, that is, the system matrix A is stable, we can always have trivial secure estimation (e.g., let the esti-
mation be zero). Thus, we do not consider the sparse detectability index of stable system. If ≠ ø, the sparse detectability
index is non-negative integer for detectable system.

Proof of Theorem 4. Define s as in (17). For arbitrary s that satisfies s ≥ s + 1, there exists a state index j∗ ∈  and a sensor
index set ∗ with |∗| = s such that  ⊃ j∗ . As a result, state j∗ cannot be observed by any sensor in  ⧵ ∗, that is,

eu
j∗ ∉ rowspan

(
Oi
)
, ∀i ∈  ⧵ ∗,
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and thus system (A,C⧵∗ ) is not detectable. As a result, the sparse detectability index cannot be larger than s defined
in (17).

For arbitrary s that satisfies s ≤ s, arbitrary  with || = s, one obtains
(
∪j∈j

)
⧵  ≠ ø, which means for all j, there

exists i∗ ∈  ⧵  such that: eu
j ∈ rowspan

(
Oi∗
)
. Therefore, system (A,C⧵) is detectable. According to Definition 2, the

system is s-sparse detectable. ▪

In conclusion, under Assumption 3, the matrix Gi has a canonical form Hi . The canonical form is determined
by sensor detectability, which can be checked easily by counting the number of non-zeros columns of matrix Oi. The
index of non-zero columns of matrix Oi is recorded in set i and i. Since the computation of Oi and checking non-zero
columns only involve polynomial-time complexity w.r.t. sensor number m and system dimension n, the computation of
sparse detectability index in (17) based on these sets can also be done in polynomial-time. Thus, the evaluation of system
vulnerability can be done computational efficiently. The following subsection illustrates the theory introduced above by
a numerical example.

3.2 Illustrative example of detectability analysis

We provide an example to illustrate the state decomposition and canonical form Hi. Suppose

A =

⎡
⎢⎢⎢⎢⎢⎣

2 1 0 0
0 2 0 0
0 0 1

2
0

0 0 0 1
2

⎤
⎥⎥⎥⎥⎥⎦

, C =
⎡
⎢⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 1 1

⎤
⎥⎥⎥⎦
.

The unstable eigenvalue is {2} and the corresponding geometric multiplicity is 1. The stable eigenvalue is {1∕2}while the
geometric multiplicity is 2. The unstable and stable index sets are respectively  = {1, 2}, = {3, 4}. The observability
matrix is in the following:

O1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0
1∕2 1
1∕4 1
1∕8 3∕4
⏟⏞⏞⏞⏟⏞⏞⏞⏟

O1

1 0
2 0
4 0
8 0

⎤
⎥⎥⎥⎥⎥⎦

⏟⏟⏟

O1

,O2 =

⎡
⎢⎢⎢⎢⎢⎣

0 1
0 1∕2
0 1∕4
0 1∕8
⏟⏞⏟⏞⏟

O2

0 1
0 2
0 4
0 8

⎤
⎥⎥⎥⎥⎥⎦

⏟⏟⏟

O2

,O3 =

⎡
⎢⎢⎢⎢⎢⎣

1 0
1∕2 1
1∕4 1
1∕8 3∕4
⏟⏞⏞⏞⏟⏞⏞⏞⏟

O3

1 1
2 2
4 4
8 8

⎤
⎥⎥⎥⎥⎥⎦

⏟⏟⏟

O3

,

According to the definition, i ∩ is the non-zero column index of matrix Oi , that is, 1 ∩ = {1, 2}, 2 ∩ =
{2}, 3 ∩ = {1, 2}. Moreover,1 = {1, 3},2 = {1, 2, 3}. As a result, Hi can be directly constructed from i rather than
transformed from Gi:

H1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦

,H2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦

,H3 =

⎡
⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦

.

One can obtain that,

rowspan
(

O1
)
= span

([
1
0

]
,

[
0
1

])
= rowspan

(
H1
)
,

rowspan
(

O2
)
= span

([
0
1

])
= rowspan

(
H2
)
,

rowspan
(

O3
)
= span

([
1
0

]
,

[
0
1

])
= rowspan

(
H3
)
.
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The sparse detectability index s can be calculated according to (17): s = min{2, 3} − 1 = 1.

3.3 Secure estimation design

Recalling the transformation Pi introduced in Theorem 3, define P̃ ≜ diag (P1, … ,Pm) , M̃ ≜ P̃W̃P̃′ and

Y (k) ≜
⎡
⎢⎢⎢⎣

P1𝜁1(k)
⋮

Pm𝜁m(k)

⎤
⎥⎥⎥⎦
, H ≜

⎡
⎢⎢⎢⎣

H1

⋮

Hm

⎤
⎥⎥⎥⎦
, where Hi = PiGi. (18)

Define the following matrix

N ≜ Im ⊗

[
0ns×nu Ins

]
∈ R

mns×mn
.

Consider the following least square problem.

minimize
x̃ls(k),𝜑(k)

1
2

[
𝜑(k)

NHx̃ls(k)

]′


[
𝜑(k)

NHx̃ls(k)

]
(19a)

subject to Y (k) = Hx̃ls(k) + 𝜑(k), (19b)

where

 ≜

[
M̃−1 + N′N N′

N I

]
. (20)

Notice that is strictly positive definite since M̃ is strictly positive definite. Define¶

F =
[

F1 F2 · · · Fm

]
, where Fi ≜ Vdiag(V−1Ki), (21)

and V is defined in (4). Recall that 𝜖(k) ≜
[
𝜖1(k)′, … , 𝜖m(k)′

]′ and 𝜖i(k) = 𝜁i(k) − Gix(k) from Lemma 1. We have the
following lemma demonstrating that solution x̃ls(k) to problem (19) equals to Kalman estimation x̂(k).

Lemma 3. In the absence of attack, the solution to least square problem (19) coincides with the Kalman estimation, that is,
the following holds where x̃ls(k) and 𝜑(k) are the solutions of problem (19):

x̃ls(k) = x̂(k), 𝜑(k) = (I − GF)𝜖(k).

Proof. Consider the following least square problem

minimize
x̃ls(k)

1
2
(Y (k) −Hx̃ls(k))′M̃

−1 (Y (k) −Hx̃ls(k)) . (22)

Based on Theorem 2 in Reference 24, the solution to problem (22) is equivalent to Kalman estimation. It is sufficient to
prove that problems (19) and (22) are equivalent. Define

≜

[
Imn 0mn×mns

N Imns

]
∈ R

m(n+ns)×m(n+ns).

¶diag(V−1Ki) is a n × n diagonal matrix with the jth diagonal entry equals to jth element of vector V−1Ki.
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Consider the objective function of problem (22) added by a constant term#:

1
2
(Y −Hx̃ls)′M̃

−1(Y −Hx̃ls) +
1
2

Y ′N′NY = 1
2

[
Y −Hx̃ls

NY

]′ [
M̃−1 0

0 I

][
Y −Hx̃ls

NY

]
. (23)

Notice that
[

Y −Hx̃ls

NY

]
=

[
Y −Hx̃ls

NHx̃ls

]
,

and (23) can be written as

1
2

(


[
Y −Hx̃ls

NHx̃ls

])′ [
M̃−1 0

0 I

](


[
Y −Hx̃ls

NHx̃ls

])
= 1

2

[
Y −Hx̃ls

NHx̃ls

]′


[
Y −Hx̃ls

NHx̃ls

]
. (24)

Substituting 𝜑 in (19) with Y −Hx̃ls leads to (24). Thus, optimizing objective function (22) is equivalent to optimizing
(24), and the latter is equivalent to problem (19). ▪

Based on least square problem (19), we present the following optimization problem whose solution x̃(k) is our
proposed secure estimation. The constant 𝛾 is a non-negative adjustable parameter.

minimize
x̃(k),𝜇(k),𝜈(k)

1
2

[
𝜇(k)

NHx̃(k)

]′


[
𝜇(k)

NHx̃(k)

]
+ 𝛾 ‖𝜈(k)‖1 (25a)

subject to Y (k) = Hx̃(k) + 𝜇(k) + 𝜈(k). (25b)

The following theorem characterizes the performance of our proposed estimator when the attacker is absent. The
proof is provided in Appendix C.

Theorem 5. In the absence of attack, if the parameter 𝛾 in problem (25) satisfies

‖‖‖‖‖‖


[
(I − GF) 𝜖(k)

NHx̂(k)

]‖‖‖‖‖‖∞
≤ 𝛾, (26)

then our proposed estimation x̃(k) is equivalent to the estimation of fixed gain Kalman filter defined in (3), that is,

x̃(k) = x̂(k). (27)

Noticing that 𝜖(k) is a stationary Gaussian process from Lemma 1, and x̂(k) is a Gaussian random variable (NHx̂(k)
denotes the stable part of x̂(k)), the probability that inequality (26) holds is determined only by system parameter
A,B,C,Q,R, 𝛾 given input u(k), and can be explicitly calculated given these parameters. By tuning design parameter 𝛾 ,
the probability of recovering the Kalman estimation can be adjusted.

In order to quantify the estimation difference between the attack is absent and present, we consider the following
local estimation 𝜁

o
i (k) and Kalman estimation x̂o(k) that are not affected by the attack:

𝜁
o
i (k + 1) = Π𝜁o

i (k) + 1nzi(k + 1) + (Gi − 1nCi)Bu(k), (28)

x̂o(k + 1) = (I − KC)
(

Ax̂o(k) + Bu(k)
)
+ Kz(k + 1), (29)

#Y (k) is fixed for each k in the optimization problem and thus is treated as a constant. For legibility, the time index (k) is omitted.
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where z(k) = Cx(k) + v(k) is the original (unmanipulated) measurement. Since the Kalman estimation x̂o(k) has direct
access to the unmanipulated measurements, we name it as oracle Kalman estimation. Define 𝜖

o
i (k) correspondingly as

𝜖
o
i (k) ≜ 𝜁

o
i (k) − Gix(k). The following theorem quantifies the estimation error introduced by the attack.

Theorem 6. Under Assumption 2 and 3, in presence of arbitrary admissible p-sparse attack, if the system (A,C) is 2p-sparse
detectable, then the estimation difference between x̃(k) solved from (25) and oracle Kalman estimation x̂o(k) satisfies

||[x̃(k)]j − [x̂o(k)]j|| ≤
⎧
⎪⎨⎪⎩

max
i1,i2∈j

||||
[

Pi1𝜁
o
i1
(k)
]

j
−
[

Pi2𝜁
o
i2
(k)
]

j

|||| + (𝛾 + 𝛾
o(k)) ‖‖∞ , j ∈ 

𝛾 ⋅ ‖‖∞ + ||[x̂o(k)]j|| , j ∈ 
, (30)

where

𝛾
o(k) ≜

‖‖‖‖‖‖


[
(I − GF) 𝜖o(k)

NHx̂o(k)

]‖‖‖‖‖‖∞
,

 ≜

([
Imn 0
0 H′N′

]


[
Imn 0
0 NH′

])−1 [
Imn 0
0 H′

]
, (31)

 ≜

[
0ns×nu Ins

]
,

with i defined in (12) and [⋅]j being the jth element of a vector. Since the oracle Kalman estimation x̂o(k) is a stable estimation
of system state x(k), and the upper bounds have bounded variance for all k ∈ N, our proposed estimation x̃(k) is secure.

Under Assumption 3, our proposed estimator is secure if the system is 2p-sparse detectable. The maximum estimation
difference from oracle Kalman estimation is shown in (30). Theorem 6 indicates smaller 𝛾 leads to lower estimation
difference upper bound in the presence of attack, that is, smaller 𝛾 means better performance under attack. However,
based on Theorem 5, smaller 𝛾 decreases the probability of recovering the optimal Kalman estimation in the absence
of attack, that is, greater 𝛾 means better performance without attack. The choice of 𝛾 represents the accuracy trade-off
between normal operation and under attack.

Moreover, since sparse detectability index only requires simple computation according to Theorem 4, our work
reduces the complexity of evaluating system vulnerability significantly under Assumption 3. For general A that has
eigenvalues with geometric multiplicity larger than 1 (A is derogatory), computing sparse observability is an NP-hard
problem,26 and there is no computational efficient solution unless P = NP. Besides the computation complexity of off-line
designing, for algorithm online operation, the computing of estimation involves solving a convex optimization problem
which can be done efficiently by off-the-shelf solvers.

3.4 Fundamental limit

This subsection proves that 2p-sparse detectability is necessary for the existence of a secure estimation, which coin-
cides with the sufficient condition of our estimator to be secure and confirms that we have achieved the fundamental
limit.

Theorem 7. If the system matrix A is strictly unstable and the system is not 2p-sparse detectable, there always exists a
p-sparse attack strategy that no estimator is secure.

Proof. The proof of bounded noise scenario can be seen in Reference 16 Theorem 1 and we provide the proof of Gaussian
noise here for paper self-consistency. If the system is not 2p-sparse detectable, then there exists an eigenvector 𝜉 of A
that corresponds to an unstable eigenvalue 𝜆 such that A𝜉 = 𝜆𝜉, C𝜉 = 0. If 𝜉 is a complex vector, then A𝜉 = 𝜆𝜉,A𝜉 = 𝜆 𝜉,
C𝜉 = 0,C𝜉 = 0, where 𝜉 represents the conjugate of 𝜉. As a result, there exists a set  with  ⊂ , || = 2p, such that the
linear transformation defined by t has a non-trivial kernel, where

t ≜
[

C′
⧵

||
(

C⧵A
)′ || · · · ||

(
C⧵At−1)′]′.
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In other words, either the following two statements is true.

(1) if 𝜉 is a real vector: t𝜉 = 0,∀t ∈ N. (2) if 𝜉 is a complex vector: t

(
𝜉 + 𝜉

)
= 0,∀t ∈ N.

Based on this result, we intend to prove that the following proposition is true.

Proposition 1. There exists zero mean Gaussian disturbances {w(k)}∞k=0, {v(k)}∞k=0, two p-sparse attack
sequences {a(1)(k)}∞k=0, {a(2)(k)}∞k=0 and a pair of initial states x(1)(0), x(2)(0) such that the two system trajectories
{x(1),w, y(1), v, a(1)}, {x(2),w, y(2), v, a(2)} satisfy:

• Two system trajectories both follow dynamics in (1) and (2).
• y(1)(k) = y(2)(k), ∀k ≥ 0.
• ||x(1)(k) − x(2)(k)||2 →∞, as k →∞.

We construct two trajectories that proves Proposition 1. Divide  into  = 1 ∪ 2 such that 1 ∩ 2 = ø and |1| =
|2| = p. Define the following two trajectories:

System 1: x(1)(0) = 0, System 2: x(2)(0) = 𝜉,

a(1)(k) =

{
CiAk

𝜉, i ∈ 1

0, i ∈  ⧵ 1
, a(2)(k) =

{
−CiAk

𝜉, i ∈ 2

0, i ∈  ⧵ 2
.

(32)

Noticing that A𝜉 = 𝜆𝜉, C𝜉 = 0, one obtains for all k ∈ N:

y(1)i (k) = y(2)i (k) =
⎧
⎪⎨⎪⎩

Ci

(
Ak

𝜉 +
∑k−1

t=0 Ak−1−tw(t)
)
+ vi(k), i ∈ 1,

Ci

(∑k−1
t=0 Ak−1−tw(t)

)
+ vi(k), i ∈  ⧵ 1.

(33)

However, ||x(1)(k) − x(2)(k)||2 = ||𝜆k
𝜉||2 is unbounded since |𝜆| > 1. If 𝜉 is complex, replace 𝜉 in (32) by 𝜉 + 𝜉 and one

can also verify that y(1)(k) = y(2)(k), ∀k ≥ 0 and x(1)(k) = 0 while x(2)(k) = 𝜆
k
(
𝜉 + 𝜉

)
. As a result, Proposition 1 is proved,

and there exists no secure estimation since the system has identical output y(k) but diverging state x(k) for two
trajectories. ▪

In view of Theorem 7, our proposed estimator achieves the fundamental limit of the secure dynamic estimation
problem, that is, provides a secure estimation whenever the system can be securely estimated. This result is stronger than
other secure estimators in the literature which require 2p-sparse observability,11-13,18,19,24 since our requirement 2p-sparse
detectability is less restrictive. The performance of our proposed estimator is corroborated by the numerical simulation
in the next section.

4 NUMERICAL SIMULATION

4.1 Inverted pendulum system (corroboration of algorithm security and accuracy)

We use an inverted pendulum for the numerical simulation to corroborate the performance of our proposed estimation
scheme in the absence of attack and in the presence of different sparse attacks. The mass of the cart and the mass of the
pendulum are both 1 kg. The length of pendulum is 1 m and the moment of inertia of the pendulum is 1∕3 kg m2. The con-
trol input u(k) is the force applied on the cart. The state x1, x2, x3, x4 represent cart position, cart velocity, pendulum angle
from vertical and pendulum angle velocity respectively. We consider the system linearized at x3 = x4 = 0, and we sample
the continuous-time linear system periodically with sampling interval Ts = 0.02 s. The first 3 sensors are monitoring state
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F I G U R E 2 Estimation of states in the absence of attack
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F I G U R E 3 Estimation of states under random signal attack and slope signal attack on sensor 3

x1 and sensor 4 is monitoring state x3. The system matrix is:

A =

⎡
⎢⎢⎢⎢⎢⎣

1 2.0 ⋅ 10−2 −2.0 ⋅ 10−4 1.9 ⋅ 10−5

0 1.0 ⋅ 100 −2.0 ⋅ 10−2 1.8 ⋅ 10−3

0 1.0 ⋅ 10−5 1.0 ⋅ 100 2.0 ⋅ 10−2

0 1.0 ⋅ 10−3 2.1 ⋅ 10−1 9.8 ⋅ 10−1

⎤
⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

.

One can calculate the sparse detectability index of the system according to Section 3 and obtain that the system is 2-sparse
detectable and our proposed estimator is secure in the presence of 1 corrupted sensor. In the simulation, the noise covari-
ances of the system are Q = R = T2

s × diag(0.1, 0.1, 0.01, 0.01). The initial state is x(0) = [0, 1, 0, 1]′ and is assumed to be
known by the estimator. The controller of the system is designed as a Linear-Quadratic Regulator (LQR), and the feedback
matrix is chosen as Klqr =

[
−8 −15 −115 −32

]
.

We first illustrate the performance of our proposed estimator in the absence of attack in Figure 2, where our proposed
estimation substantially coincides with the Kalman estimation. The numerical difference attributes to large Gaussian
noise that occurs occasionally which violates inequality (26) and error in numerical calculation.

In the following, we show the performance of our proposed estimator under random signal attack and slope signal
attack launched on sensor 3 in Figure 3. The random signal attack is a time-independent random value uniformly dis-
tributed on interval (−1, 1). The slope signal attack is a linearly increasing signal with a rate of 2 m/s, that is, a(k) = 2kTs.
As shown in the left two sub-figures of Figure 3, Kalman estimation (denoted as red line) is corrupted by the injected sig-
nal and has a larger estimation error than our proposed estimation. In the right two sub-figures, the Kalman estimation
of cart position is driven away from its actual value, and the Kalman estimation of cart velocity has a stationary nonzero
error. In contrast, our proposed estimator has smaller and bounded estimation error covariance under attack.
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F I G U R E 4 Estimation mean square error (MSE) with varying tuning parameter 𝛾 . (A) Performance trade-off under random signal
attack and no attack. The MSE of Kalman filter under attack is 0.407; (B) Performance trade-off under slope signal attack and no attack. The
MSE of Kalman filter under attack is 6.26

Our proposed estimator has a tuning parameter 𝛾 balancing the performance under and without attack. In the follow-
ing, we show the trade-off between the estimation error under attack and without attack by tuning 𝛾 . Figure 4 illustrates
the estimation mean square error MSE

(
MSE = 1

N

∑N
k=1‖x̃(k) − x(k)‖2

2

)
of our proposed estimator with varying tuning

parameter 𝛾 with sensor 3 corrupted. In Figure 4A,B, the MSE of the oracle Kalman estimator is illustrated by the red
dashed line, and that of our proposed estimator under attack is illustrated by the solid blue line. The point in the lower-left
corner represents small estimation errors in both scenarios with attack and without attack. As shown in Figure 4A,B, by
properly choosing 𝛾 , the MSE of our proposed estimator achieves good performance under both scenarios (with and with-
out attack). The MSE of our proposed estimator without attack is 0.036, which is slightly larger than that of the Kalman
estimator. Under both attacks, the MSE of our proposed estimator is roughly 0.040. In contrast, the MSE of Kalman esti-
mation under random signal attack is 0.407 and is 6.26 under slope signal attack, which are significantly larger than that
of the proposed secure estimator.

4.2 IEEE 68-bus system (corroboration of algorithm low complexity)

We employ the IEEE 68-bus system, which is extensively used in the literature,17 for simulation to further demonstrate
the benefits of our scheme on low complexity and validate the performance. The IEEE 68-bus system is composed of 16
generator buses (indexed from 1 to 16) and 52 load buses (indexed from 17 to 68), as shown in Figure 5. The network
topology is depicted as an undirected graph ( , ) with  representing the vertex set and  representing the edge set.
We adapt the system dynamic as in Wood et al.29 which is also seen in Yong et al..17 The phase angle 𝜃i(t) and angular
frequency 𝜔i(t) on each bus i satisfy:

𝜃̇i(t) = 𝜔i(t), (34)

𝜔̇i(t) = −
1

mi

⎡
⎢⎢⎣
Di𝜔i(t) +

∑
j∈i

Pij
tie(t) − Pi(t) + wi(t)

⎤
⎥⎥⎦
. (35)

The power flow between neighboring buses (i, j) ∈  is given by Pij
tie(t) = −Pji

tie(t) = tij
(
𝜃i(t) − 𝜃j(t)

)
. The power Pi(t)

denotes the mechanical power for the generator bus and the negative of power demand for the load bus. Pi(t) is modeled
as the system input and assumed to be known by the system operator. The noise wi(t) is a zero-mean Gaussian signal with
covariance matrix Qi(t) = 10−6I, and the system parameters are Di = 1, tij = 15 for all i ∈  , j ∈i, and tij = 0 otherwise.
Angular momentums are mi = 10 for generator buses and a larger value mi = 100 for load buses. The system is sampled
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F I G U R E 5 IEEE 68 bus test system with load bus 17,18,54,60 corrupted (framed by red box). Source: The figure is adapted from
Ishizaki et al.28

at discrete times with sampling interval Ts = 0.01 s. The measurements are also discrete in time:

[
yi1(k) yi2(k) yi3(k)

]⊤
=
[

Pelec,i(k) 𝜃i(k) 𝜔i(k)
]⊤
+ vi(k),

where Pelec,i(k) = Di𝜔i(k) + I{i ∈ l} ⋅ Pi(k) is the electrical power output and vi,k is a zero-mean Gaussian noise signal
with covariance matrix Ri = T4

s I.
The system has dimension n = 136 (each bus is associated with two scalar states 𝜔i and 𝜃i), and the sensor number is

m = 204 (each bus has electrical power sensor, phase angle sensor, and angular frequency sensor). The complexity bounds
of some methods in the literature are shown in Table 1. As shown in the table, if there is no a priori information about the
sensor vulnerability, the number of possible combinations of corrupted sensor choices is huge, making maintaining all
possible candidate filters16 or sequentially switching among them until hitting a benign combination20 computationally
heavy or even intractable. Furthermore, for sliding window methods, the dimension of the convex optimization problem
may be large (m × T, and T is required to be no less than n). In view of the scalability issues, the Satisfiability Mod-
ulo Theory (SMT) is adapted by Shoukry et al.18 and Mishra et al.19 to harness the complexity. However, the proposed
methods can reduce the computational complexity effectively only when the corrupted sensor number is relatively large
compared to total sensor number (e.g., nearly half of the sensors are corrupted). If the corrupted sensor only takes a small
portion (4 out of 204 sensors in this case), the reduction in computational complexity is not significant for the SMT-based
method.

For our proposed scheme, the dimension of the convex optimization problem is also large (m × n). However, we can
reduce the dimension significantly at the cost of a minor loss of accuracy. On the one hand, by only retaining the elements
on the diagonal blocks of weighting matrix and setting other elements to zero, we obtain that the optimization problem
(25) can be decomposed to minimize the summation of m terms:

minimize𝜈(k),x̃(k)

m∑
i=1

1
2

[
Hix̃(k) + 𝜈i(k) − Pi𝜁i(k)

Hs
i x̃(k)

]′
i

[
Hix̃(k) + 𝜈i(k) − Pi𝜁i(k)

Hs
i x̃(k)

]
+ 𝛾 ‖𝜈i(k)‖1 , (36)
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T A B L E 1 Complexity comparison between different resilient estimation methods for m sensor system
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F I G U R E 6 Estimation of states under step signal attack on IEEE 68 system. The left two sub-figures illustrate the phase angle and
angular velocity of bus 17. The right two sub-figures illustrate those of bus 54

which can be transformed into minimizing m uncorrelated objective functions with the constraint that they have reached
consensus on solution x̃(k). On the other hand, due to the sparse observability structure (one sensor can only observe
a few number of states), we know that the canonical matrix Hi is a low-rank diagonal matrix. By rearranging the rows

of Hi, one can obtain a matrix with only first rank(Hi) rows non-zero, that is,
[

H̃i
0

]
, with H̃i of size rank(Hi) × n. By

substituting Hi by H̃i in optimization problem (36) (the corresponding rows and columns of matrixi and entries of vector
𝜈i are also discarded), the dimension is further decreased. For this IEEE 68-bus system example, our proposed algorithm
involves cooperatively solving m = 204 convex optimization problems whose optimization variable is of dimension 7
(much lower than system state dimension n = 136), and can be easily implemented in a distributed manner. However,
this simplification will cause a minor loss of accuracy. It can be seen in Figure 6 that the estimation error is small and
acceptable.

In the simulation, we launched two different attacks on the same four sensors, that is, the phase angle sensors at
buses 17, 18, 54, 60. In Figure 6, sensors are corrupted by step signals with a magnitude of 𝜋. In Figure 7, sensors are cor-
rupted by random signal that is uniformly distributed in interval (−1, 1). The two attacks are both launched at t = 0.5 s.
Figure 6 illustrates the estimation of states on buses 17 and 54, and Figure 6 illustrates the estimation of states on buses
18 and 60. Since the enormous number of possible corrupted sensor combinations that some methods require to consider
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F I G U R E 7 Estimation of states under random signal attack on IEEE 68 system. The left two sub-figures illustrate the phase angle
and angular velocity of bus 18. The right two sub-figures illustrate those of bus 60

makes the numerical simulation exceedingly costly, we assume the switching method and the sliding window method
know the corrupted sensor set in the simulation. For our proposed estimation and the fix-gain Kalman estimation, the
corrupted sensor set is unknown. As shown in Figures 6 and 7, the fixed gain Kalman estimation (3) is not secure against
sparse attack, and the estimated state (red line) deviates from real state (black line) under attack. Other secure estima-
tion schemes can recover the system state with small errors. The estimation error of our proposed estimation scheme is
acceptable considering the merit of low computational complexity.

5 CONCLUSION

This article considers LTI systems with Gaussian noise against sparse integrity attack on an unknown subset of sensors.
Under the assumption that the system is regular and A is non-singular, we propose an estimation scheme that is secure
to p-sparse attack as long as the system is 2p-sparse detectable. Our design first decomposes the Kalman estimator into
local estimators and then fuses the local estimation in a secure manner. The secure fusion scheme is developed by the
following two steps. (1) We first prove that the matrix Gi has a canonical form under Assumption 3, and the canonical
form can be constructed according to the observability matrix Oi. The canonical form Hi constitutes the coefficient of the
secure fusion optimization problem. (2) In order to guarantee that the stable states are always secure, the fusion scheme
is carefully designed as a convex optimization problem where unstable and stable state entries play different roles. By this
design, the estimation of stable states are always secured.

As a result, the proposed estimation scheme is proved to be secure against p-sparse attack as long as the system is
2p-sparse detectable, and the system sparse detectability index can be calculated in polynomial time with respect to m and
n by our design. Moreover, in the absence of attack, the proposed estimation coincides with Kalman estimation for certain
probability, which can be adjusted by tuning parameter 𝛾 to balance the performance with and without attack. We further
prove that the 2p-sparse detectability is the fundamental limit of secure dynamic estimation. Our proposed estimator
achieves this fundamental limit with good performance and low computation complexity. The proposed estimator is
corroborated by two simulation examples, the inverted pendulum system, and IEEE 68 bus system. In the latter simulation
case, we compared the estimation performance and computational complexity of our scheme with some existing methods
in the literature. It is shown that our scheme has lower computation complexity at the cost of minor accuracy loss.
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APPENDIX A. PROOF OF THEOREM 2

Before proving Theorem 2, we need the following lemma.

Lemma 4. When all the eigenvalues of A has geometric multiplicity 1, non-zero columns of Oi are linearly independent.

Proof of Lemma 4. Suppose A is in the Jordan canonical form, that is,

A = diag(J1.J2. … , Jl),

where Jp is the Jordan block with respect to eigenvalue 𝜆p. Denote the algebraic multiplicity of 𝜆p as 𝛼(p). The integer l is
the number of Jordan blocks and the size of block Jp equals to the algebraic multiplicity 𝛼(p) since the geometric multi-
plicity equals to one. Moreover,

∑l
p=1𝛼(p) = n. Then Oi =

[
C′

i (CiA)′ · · · (CiAn−1)′
]′ can be formulated into the following

stack of vertical groups:

⎡
⎢⎢⎢⎢⎢⎣

Ci,1 Ci,2 · · · Ci,l

Ci,1J1 Ci,2J2 · · · Ci,lJl

⋮ ⋮ ⋮ ⋮

Ci,1Jn−1
1 Ci,2Jn−1

2 · · · Ci,lJn−1
l

⎤
⎥⎥⎥⎥⎥⎦

,

where Ci,p is the segment of Ci with entries corresponding to block Jp, that is, Ci,p is composed of elements in row vector
Ci with entry index from

∑p−1
k=1𝛼(k) + 1 to

∑p
k=1𝛼(k). We concentrate on the vertical group corresponding to block Jp. With

the help of Jordan canonical form, we can rewrite the vertical group as

⎡
⎢⎢⎢⎢⎢⎣

Ci,p

Ci,pJp

⋮

Ci,pJn−1
p

⎤
⎥⎥⎥⎥⎥⎦

=
[

Ci,p(1)𝛽p(1) || Ci,p(2)𝛽p(1) + Ci,p(1)𝛽p(2) || · · · ||
∑𝛼(p)

j=1 Ci,p(j)𝛽p (𝛼(p) + 1 − j)
]
, (A1)

where Ci,p(k) is the kth entry of row vector Ci,p, and 𝛽p(k) ∈ is a n × 1 column vector defined:

𝛽p(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I(1, k)
Jp(1, k)
J2

p(1, k)
⋮

Jn−1
p (1, k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, where Jq
p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝜆p 1 0 · · · 0
0 𝜆p 1 · · · 0
0 0 𝜆p ⋱ ⋮

⋮ ⋮ ⋮ ⋱ 1
0 0 0 · · · 𝜆p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

q

.

Jq
p (1, k) is the element at first row, kth column of matrix Jq

p , which is the qth power of matrix Jp. According to the
Jordan canonical form, for a fixed p, vectors in {𝛽p(k), 1 ≤ k ≤ 𝛼(p)} are linearly independent. Moreover, since the

info:doi/10.1109/TAC.2020.3035631
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geometric multiplicities of A are all one, 𝜆j ≠ 𝜆p when j ≠ p. As a result, vectors in {𝛽p(k), 1 ≤ p ≤ l, 1 ≤ k ≤ 𝛼(p)} are lin-
early independent. According to Equation (A1), if the jth column is not zero vector, it is linearly independent to other
columns. ▪

Proof. Proof of Theorem 2 (1) According to the definition of i, span
{

ej|j ∈ i
}
= span

{
ej|Oiej ≠ 0, j ∈ 

}
. We first

prove the following two statements are equivalent:

(i) Vectors in set {Oiej|Oiej ≠ 0, j ∈  } are linearly independent.
(ii) Oi = span

{
ej|Oiej ≠ 0, j ∈ 

}
.

We first prove (ii)⇒(i) by proving its contrapositive. According to the definition of Oi, we have Oi ≜ rowspan(Oi).
Since Oiej is jth column of matrix Oi, (i) is stating that the non-zero columns of Oi are linear dependent. If (i) holds,

dim(Oi) = rank(Oi) < |i| = dim
(
span

{
ej|Oiej ≠ 0, j ∈ 

})
,

and thus Oi ≠ span
{

ej|Oiej ≠ 0, j ∈ 
}
.

We proceed to prove (i)⇒(ii). If the non-zero columns of Oi are linearly independent, by elementary row operations,
Oi can be transformed into the following Smith standard form:

Õi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e′j1

e′j2

⋮

e′jn(i)

0(n−n(i))×n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where {j1, j2, … , jn(i)} = {j ∈  |Oiej ≠ 0}. As a result, Oi = rowspan(Oi) = rowspan(Õi) = span
{

ej|Oiej ≠ 0, j ∈ 
}

. At
this point, it is proved that (i) and (ii) are equivalent.

Since (ii) is equivalent to Oi = span
(

ej, j ∈ i
)

and (i) holds true from Lemma 4, the proof of Theorem 2 (1) is
completed.

Proof of Theorem 2 (2) Define the characteristic polynomial of A as p(x) = anxn + · · · + a1x + a0. Define polynomial
fraction q𝜋(x) with respect to constant 𝜋 as q𝜋(x) ≜ (x − 𝜋)−1(p(x) − p(𝜋)) where x ≠ 𝜋.

We have

q𝜋(x) = (x − 𝜋)−1 (an(xn − 𝜋
n) + an−1(xn−1 − 𝜋

n−1) + · · · + a1(x − 𝜋)
)

= an
(

xn−1 + 𝜋xn−2 + 𝜋
2xn−3 + · · · + 𝜋

n−1) + an−1
(

xn−2 + 𝜋xn−3 + 𝜋
2xn−4 + · · · + 𝜋

n−2) + · · · + a2 (x + 𝜋) + a1.

(A2)

Equation (A2) is also valid when x is a square matrix. As a result, by rearranging the terms of A with the same power, one
obtains

q𝜋j(A) = an

(
An−1 + 𝜋jAn−2 + · · · + 𝜋

n−1
j I

)
+ an−1

(
An−2 + 𝜋jAn−3 + · · · + 𝜋

n−2
j I

)
+ · · · + a2

(
A + 𝜋jI

)
+ · · · + a1I

= anAn−1 +
(

an𝜋j + an−1
)

An−2 + · · · +
(

an𝜋
n−1
j + an−1𝜋

n−2
j + · · · + a2𝜋j + a1

)
I,

Define bj,k as the constant scalar coefficient of Ak in q𝜋j(A):

bj,k ≜

n−k−1∑
i=0

ai+k+1𝜋
i
j . (A3)
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Thus, q𝜋j(A) =
∑n−1

k=0bj,kAk. According to the Cayley–Hamilton theorem, p(A) = 0. Thus, q𝜋j(A) = (A − 𝜋jI)−1 ⋅(
0 − p(𝜋j)I

)
. The jth row of matrix Gi can be reformulated as

CiA
(

A − 𝜋jI
)−1 = − 1

p(𝜋j)
CiAq𝜋j(A)

= − 1
p(𝜋j)

Ci

(n−1∑
k=0

bj,kAk+1

)

= − 1
p(𝜋j)

[
bj,0 bj,1 · · · bj,n−1

]
⎡
⎢⎢⎢⎢⎢⎣

CiA
CiA2

⋮

CiAn

⎤
⎥⎥⎥⎥⎥⎦

= − 1
p(𝜋j)

[
bj,0 bj,1 · · · bj,n−1

]
OiA.

Therefore, Gi can be interpreted as follows

Gi = 1

⎡
⎢⎢⎢⎢⎢⎣

b1,0 b1,1 · · · b1,n−1

b2,0 b2,1 · · · b2,n−1

⋮ ⋮ ⋱ ⋮

bn,0 bn,1 · · · bn,n−1

⎤
⎥⎥⎥⎥⎥⎦

OiA = 1

⎡
⎢⎢⎢⎢⎢⎣

𝜋
n−1
1 𝜋

n−2
1 · · · 1

𝜋
n−1
2 𝜋

n−2
2 · · · 1

⋮ ⋮ · · · ⋮

𝜋
n−1
n 𝜋

n−2
n · · · 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

an 0 · · · 0
an−1 an · · · 0
⋮ ⋮ ⋱ ⋮

a1 a2 · · · an

⎤
⎥⎥⎥⎥⎥⎦

OiA, (A4)

where1 ≜ diag
(
− 1

p(𝜋1)
,− 1

p(𝜋2)
, … ,− 1

p(𝜋n)

)
. According to Assumption 2, all 𝜋j are distinct eigenvalues and they are not

the eigenvalues of A, that is, the diagonal matrix1 and the Vandermonde matrix of 𝜋j
i are invertible. Moreover, since an ≠

0, the lower triangular Toeplitz matrix of ai is invertible and thus rowspan(Gi) = rowspan(OiA) from Equation (A4). We
continue to prove rowspan(Oi) = rowspan(OiA). Considering that An = −an−1An−1 − · · · − a0I, one obtains the following
Equation (A5).

OiA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Oi. (A5)

If A is invertible, we have a0 = (−1)n det(A) ≠ 0, which leads to the equation that rowspan(Oi) = rowspan(OiA). Therefore,
one obtains Oi ≜ rowspan(Oi) = rowspan(Gi). ▪

APPENDIX B. PROOF OF THEOREM 3

Proof of Theorem 5. Considering the KKT condition of problem (25), one obtains that if

‖‖‖‖‖‖


[
𝜇(k)

NHx̃(k)

]‖‖‖‖‖‖∞
≤ 𝛾,

then the solution 𝜈(k) satisfy that 𝜈(k) = 0. In this scenario, solutions to problem (25) and problem (19) are equivalent
and the solution x̃(k), 𝜇(k), 𝜈(k) satisfy

x̃(k) = x̃ls(k) = x̂(k), 𝜇(k) = 𝜑(k), 𝜈(k) = 0. (B1)
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According to Lemma 3, the solution 𝜑(k) of problem (19) satisfy the following equation:

x̃ls(k) = x̂(k), 𝜑(k) = (I − GF)𝜖(k), (B2)

where x̂(k) is the fixed gain Kalman estimation defined in (3). Combining (B2) and (B1), result in Theorem 5 is
obtained. ▪

APPENDIX C. PROOF OF THEOREM 4

Before proving Theorem 6, we need the following lemma. Define the number of honest sensors and compromised sensors
(w.r.t. compromised sensor index set ) that can observe state j as:

hj() ≜ |j ∩  ⧵ |, cj() ≜ |j ∩ |.

We have the following lemma quantifying the property of hj() and cj().

Lemma 5. The following two propositions are equivalent.

1. The system is 2p-sparse detectable.
2. For any  with || = p, the inequality cj() < hj() holds for all j ∈  .

Proof of Lemma 5. We prove the contrapositive of (1)⇒(2). Supposing that there exists j∗ and ∗ with |∗| = p such that
cj∗ (∗) ≥ hj∗ (∗), then hj∗ (∗) ≤ cj∗ (∗) ≤ |∗| = p. Noticing that cj() + hj() = |j| holds for all , we have |j∗ | ≤ 2p.
There exists sensor index set  that satisfy  ⊇ j∗ and || = 2p. According to the definition of j∗ , there exists no sensor
in set  ⧵  who can observe state j∗, that is,

eu
j∗ ∉ rowspan

(
Oi
)
, ∀i ∈  ⧵ .

As a result, system (A,C⧵) is not 2p-sparse detectable according to Definition 2.
We proceed to prove (2)⇒(1). Since for any  with || = p, hj() > cj() ≥ 0, the system sparse detectability index

is at least p. Therefore, for each j ∈  , there exists an ∗ such that cj(∗) = p, and thus |j| = hj(∗) + cj(∗) ≥ 2p + 1.
According to the definitionj, there are at least 2p + 1 sensors that can observe stable state j. Thus, the system is 2p-sparse
detectable. ▪

We need the following notations for the proof. Define the unstable part and stable parts of x as the following where
xu ∈ Cnu×1 and xs ∈ Cns×1. Similarly, divide matrix Hi into four parts based on Theorem 3 where Huu,i ∈ Cnu×nu and Hss,i ∈
Cns×ns .

x =

[
xu

xs

]
, Hi =

[
Huu,i Hus,i

0ns×nu Hss,i

]
.

Define 𝜂i ≜ Pi𝜁i. Similar to x, x̃ and 𝜂i are also divided to x̃u, x̃s, 𝜂i,u, 𝜂i,s in the same way.

Proof of Theorem 6. Consider the KKT condition of problem (25) and denote the dual variables for equation constraints
as 𝜆 = [𝜆′1, … , 𝜆

′
m]′ ∈ Cmn×1:

(M̃−1 + N′N)𝜇 + N′NHx̃ − 𝜆 = 0, (C1)

H′N′N𝜇 +H′N′NHx̃ −H′
𝜆 = 0, (C2)

𝛾 ⋅ 𝜈̃ − 𝜆 = 0, (C3)
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Y −Hx̃ − 𝜇 − 𝜈 = 0, (C4)

where 𝜈̃ belongs to the sub-gradient of ||𝜈||1 and thus satisfies that ||𝜈̃||∞ ≤ 1.
Combining (C1) and (C2) leads to:

[
M̃−1 + N′N N′NH

H′N′N H′N′NH

][
𝜇

x̃

]
=

[
𝜆

H′
𝜆

]
. (C5)

According to the definition of N, the first nu rows of H′N′N are zeros. Therefore, we extract the non-zeros part of
Equation (C5) in the following:

[
M̃−1 + N′N N′NH′

H′N′N H′N′NH′

][
𝜇

x̃s

]
=

[
𝜆

H′
𝜆

]
, (C6)

where  ≜
[
0ns×nu Ins

]
. Rewrite (C6) as:

([
Imn 0
0 H′N′

]


[
Imn 0
0 NH′

])[
𝜇

x̃s

]
=

[
Imn 0
0 H′

]
𝜆. (C7)

Notice that is positive definite and
[

Imn 0
0 H′N′

]
is full row-rank, due to the Frobenius rank inequality, the matrix on

the left of (C7) is also invertible, and thus the following matrix is well-defined:

 ≜

([
Imn 0
0 H′N′

]


[
Imn 0
0 NH′

])−1 [
Imn 0
0 H′

]
. (C8)

According to (C3), ||𝜆||∞ ≤ 𝛾 . Therefore we have the following from (C7):

‖‖‖‖‖‖

[
𝜇

x̃s

]‖‖‖‖‖‖∞
≤ 𝛾 ⋅ ‖‖∞ . (C9)

Now we continue to prove that the estimation of unstable states x̃u are secure. Rewrite the optimization problem (25) as

minimize
x̃, 𝜇

1
2

[
𝜇

NHx̃

]′


[
𝜇

NHx̃

]
+ 𝛾 ‖Y − 𝜇 −Hx̃‖1 ,

where the time index is omitted for notation simplicity. Consider the 1-norm term in the objective function:

‖Y − 𝜇 −Hx̃‖1 =
m∑

i=1

‖‖𝜂i,u − 𝜇i,u − (Huu,ix̃u +Hus,ix̃s)‖‖1 +
m∑

i=1

‖‖𝜂i,s − 𝜇i,s −Hss,ix̃s‖‖1 ,

where 𝜂i,u, 𝜇i,u is the vector composed of first nu element of 𝜂i, 𝜇i and 𝜂i,s, 𝜇i,s is the vector composed of last ns element of
𝜂i, 𝜇i. Suppose that 𝜇 and x̃s have taken the value of optimal solution 𝜇

∗
, x̃∗s , it is sufficient to minimize the following :

min
x̃u

m∑
i=1

‖‖‖𝜂i,u − 𝜇
∗
i,u −Hus,ix̃∗s −Huu,ix̃u

‖‖‖1
. (C10)

Define 𝜉i ≜ 𝜂i,u − 𝜇
∗
i,u −Hus,ix̃∗s and recall [⋅]j is the jth entry of a vector. The objective function in (C10) can be written as

m∑
i=1

nu∑
j=1

||[𝜉i]j − [Huu,ix̃u]j|| =
nu∑
j=1

∑
i∈j

||[𝜉i]j − x̃j|| . (C11)
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where j is the index set of sensors that can observe state j that is defined in (12). For each unstable state j ∈  , the
minimizer x̃j of objective (C11) could be explicitly written as the median of all [𝜉i]j among i ∈ j.

Before proving that x̃j is bounded, let us define the following operator: fi ∶ R × R × · · · × R → R, such that
fi (xl, l ∈ {1, … ,L}) equals to the ith smallest element in the set {x1, … , xL} . For even number i, we further define

f i+1
2
=
(

f i
2
+ f i

2
+1

)
∕2.

Thus, f(L+1)∕2 (xl, l ∈ {1, … ,L}) is the median number of set {x1, … , xL} and the solution to problem (C10) is

x̃j = f(|j|+1)∕2
(
[𝜉i]j, i ∈ j

)
, j ∈  .

Define the uncorrupted data corresponding to sensor i as 𝜂
o
i = Pi𝜁

o
i . Define 𝜉

o
i correspondingly as 𝜉

o
i ≜ 𝜂

o
i,u − 𝜇

∗
i,u −

Hus,ix∗s . Recalling that the number of honest sensors and compromised sensors that can observe unstable state j ∈  are
hj and cj, we have

f(hj−cj)
(
[𝜉o

i ]j, i ∈ j
)
≤ f(m+1)∕2

(
[𝜉i]j, i ∈ j

)
, (C12)

f(m+1)∕2
(
[𝜉i]j, i ∈ j

)
≤ f2cj

(
[𝜉o

i ]j, i ∈ j
)
. (C13)

According to Lemma 5, hj − cj > 0 and 2cj < hj + cj = |j|. As a result, according to (C12) and (C13), one obtains

min
{
[𝜉o

i ]j, i ∈ j
}
≤ x̃j ≤ max

{
[𝜉o

i ]j, i ∈ j
}
, j ∈  . (C14)

Consider the following optimization problem where observation are not influenced by attack:

minimize
x̃o
,𝜇o

1
2

[
𝜇

o

NHx̃o

]′


[
𝜇

o

NHx̃o

]
+ 𝛾

o ‖Y o − 𝜇
o −Hx̃o‖1 ,

where Y o is composed of Pi𝜁
o
i . Denote the solution to this problem as x̃o

, 𝜇
o. According to Theorem 5, by choosing

𝛾
o =

‖‖‖‖‖‖


[
(I − GF) 𝜖o(k)

NHx̂o(k)

]‖‖‖‖‖‖∞
,

the solution coincides with Kalman estimation, that is, x̃o(k) = x̂o(k). Similar to previous analysis, the solution x̃o satisfies

[x̃o]j = f(|j|+1)∕2
(
[Pi𝜁

o
i − 𝜇

o
i ]j, i ∈ j

)
,∀j ∈  ∪  . (C15)

Combining (C14) and (C15) leads to that, for every j ∈  ,

||[x̃]j − [x̃o]j|| = ||[x̃]j − [x̂o]j|| ≤max
i1,i2∈j

||||
[

Pi1𝜁
o
i1
(k)
]

j
−
[

Pi2𝜁
o
i2
(k)
]

j

|||| + ||𝜇
∗||∞ + ||𝜇o||∞

≤max
i1,i2∈j

||||
[

Pi1𝜁
o
i1
(k)
]

j
−
[

Pi2𝜁
o
i2
(k)
]

j

|||| + (𝛾 + 𝛾
o)||||∞.

Recall that Pi𝜖i(k) = Pi𝜁i(k) −Hix(k). Since for all i1, i2 ∈ j, one obtains [Hi1 x(k)]j = [x(k)]j = [Hi2 x(k)]j,∀k ∈ Z+. Thus,
we have

max
i1,i2∈j

||||
[

Pi1𝜁
o
i1
(k)
]

j
−
[

Pi2𝜁
o
i2
(k)
]

j

|||| = max
i1,i2∈j

||||
[

Pi1𝜖
o
i1
(k)
]

j
−
[

Pi2𝜖
o
i2
(k)
]

j

|||| ,

whose variance is uniformly bounded for all k according to Lemma 1. Similarly, 𝛾o is also uniformly bounded for all k.
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For stable state,

|||x̃j − x̂o
j
||| ≤ ||x̃j|| + |||x̂

o
j
||| ≤ 𝛾 ⋅ ‖‖∞ + |||x̂

o
j
||| , j ∈  ,

where ||x̃j|| ≤ 𝛾 ⋅ ‖‖∞ , j ∈  comes from (C9). The oracle Kalman estimation x̂o
j of stable state has bounded covariance.

As a result, our estimation x̃ is secure according to Definition 3. ▪
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