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Abstract— In this paper, we consider a Model Predictive
Control (MPC) problem of a continuous-time linear time-
invariant system subject to continuous-time path constraints
on the states and the inputs. By leveraging the concept of
differential flatness, we can replace the differential equations
governing the system with linear mapping between the states,
inputs, and flat outputs (including their derivatives). The flat
outputs are then parameterized by piecewise polynomials, and
the model predictive control problem can be equivalently trans-
formed into a Semi-Definite Programming (SDP) problem via
Sum-of-Squares (SOS), ensuring constraint satisfaction at every
continuous-time interval. We further note that the SDP problem
contains a large number of small-size semi-definite matrices as
optimization variables. To address this, we develop a Primal-
Dual Hybrid Gradient (PDHG) algorithm that can be efficiently
parallelized to speed up the optimization procedure. Simulation
results on a quadruple-tank process demonstrate that our
formulation can guarantee strict constraint satisfaction, while
the standard MPC controller based on the discretized system
may violate the constraint inside a sampling period. Moreover,
the computational speed superiority of our proposed algorithm
is collaborated by numerical simulation.

I. INTRODUCTION

The optimal control theory aims to find control laws for
a dynamical system in order to optimize a given objective
function, which finds numerous applications in fields of
engineering [1]–[3] and economics [4]–[6] etc. Closed-form
optimal control law can be found for certain unconstrained
problems, such as linear-quadratic control problem [7], or
brachistochrone problem [8]. However, analytically solving
the optimal control problem of continuous-time systems
remains a challenging task. Furthermore, a vast majority
of real-world dynamical systems operate under various con-
straints, such as input saturation or safety constraint on the
state. For constrained optimal control problem, Pontryagin’s
maximum principle [9] can be used to derive necessary
condition for optimality. However, in practice, only a small
number of problems can be solved analytically. Therefore,
algorithms, such as model predictive control, discretize the
system and thus reducing the search space of the control
input from the infinite dimensional function space into a
finite dimensional space, where numerical optimization can
be used.

Dynamic Matrix Control (DMC) [10] and Model Algo-
rithmic Control (MAC) [11] are two formulations of MPC

1Zishuo Li, Bo Yang, Jiayun Li, and Yilin Mo are with the Department of
Automation, Tsinghua University, Beijing, 100084, China. {lizs19,yang-
b21,lijiayun22}@mails.tsinghua.edu.cn, ylmo@tsinghua.edu.cn

2Jiaqi Yan is with Department of Computer Science, Tokyo Institute of
Technology, Tokyo, Japan. jyan@sc.dis.titech.ac.jp

algorithm for discretized optimal control problems with con-
straints [12]. Both formulations employ a zero-order hold for
the control inputs, which implies that the control inputs are
step functions and hence reside in a finite dimensional space.
However, the discretization of a continuous time system
means that one can only guarantee constraint satisfaction at
all discrete-time instant, where constraint violation can occur
in between.

For control applications with high safety requirements,
constraints violations can be intolerable. In order to meet the
constraints at all time, Semi-Infinite Programming (SIP) [13]
has been used to deal with infinite number of constraints.
Several approaches for solving SIP have been proposed,
and a common framework is to check constraint viola-
tions in intervals, and adaptively add additional discrete-
time points until the tolerance level is guaranteed or no
constraint violations occur. Chen et al [14] introduce ϵ-
tolerance on inequality constraints, which means that the
constraints may still be violated up to ϵ. Fu et al. [15]
tighten the inequality constraints at discrete-time instant,
hence guarantee the satisfactory of constraints over the whole
interval. However, tighter constraints may lead to relatively
conservative solution.

To address these issues, we parameterize the flat output of
the continuous-time linear system by piecewise polynomials.
The differential equation of the dynamic system is eliminated
and replaced by flatness map between flat output y and
system state x, input u [16]. In this way, the decision
variables become finite-dimensional polynomial coefficients.
On the other hand, the inequality constraints become non-
negative polynomials over intervals, which are still infinite-
dimensional. Fortunately, we can leverage Markov-Lukács
theorem [17], [18] to transcribe a polynomial inequality
constraint on an interval into an equivalent matrix Posi-
tive Semi-Definite (PSD) constraint, thus ensures the path
constraints hold at every time interval. With this procedure,
the continuous-time MPC problem can be transcribed into a
Semi-Definite Programming (SDP) problem.

It is worth noticing that the SDP problem we formulate
contains a large amount of small symmetric matrices. As a
result, we propose to use parallel computing to speed up the
calculation. To this end, we use a customized Primal-Dual
Hybrid Gradient (PDHG) algorithm to solve the SDP prob-
lem. PDHG, also known as Chambolle-Pock [19], is a well-
known first-order algorithm dealing with convex optimization
problems with equality constraints. For large scale problems,
it has been one of the preferred first-order algorithm [20] due
to the fact that it can be easily parallelized.



The main contributions of this article are as follows.
• An equivalent formulation of continuous inequality con-

strained linear MPC problem is derived, in which the
system dynamics are eliminated by using differential
flatness. The problem is then converted into a polyno-
mial optimization problem by parameterizing the flat
output with piece-wise polynomials.

• Path constraints are rigorously guaranteed by using
sum of squares theory to transcribe the non-negative
constraints of polynomials into the equivalent positive
semi-definite constraints of matrices, and an equivalent
SDP programming problem is formulated.

• The SDP problem is solved by using the customized
primal-dual splitting-based iterations and accelerated by
parallel computing.

It is worth noting that, although the derivations in this
paper are carried out for linear MPC problems, it can also
be extended to nonlinear MPC problems if the constraints
remain linear and the objective remains quadratic after the
differentially flat transformation.

The paper is organized as follows. Differential flatness
theory is stated and the form of flatness map for linear
systems is described in Section II. The transformation of
linear MPC problem with continuous-time path constraints
into SDP problem is discussed in Section III. In Section
IV, we present the PDHG algorithm for SDP solving and
explain that it can be accelerated by parallel computing.
The simulation validation of our proposed MPC solver on
quadruple-tank process is provided in Section V. Finally,
concluding remarks are made in Section VI

II. PRELIMINARY: DIFFERENTIAL FLATNESS OF LINEAR
SYSTEM

Differential flatness is an important concept for a class of
linear and nonlinear systems [16]. A system is differentially
flat if and only if there exists a flat output, such that all states
and inputs subject to system dynamical constraints can be
explicitly expressed as functions of the flat output (which
is free of dynamical constraints) and a finite number of its
derivatives.

In this paper, we restrict our discussion to linear system.
Consider an LTI system governed by the following ordinary
differential equation:

ẋ(t) = Ax(t) +Bu(t), (1)

where x ∈ Rn, u ∈ Rm. Without loss of generality, we
assume that (A,B) is controllable. Otherwise, we can always
perform a Kalman decomposition and only consider the
controllable part of the system.

For such a system, Filess et al. [16] proved the following
theorem:

Theorem 1 (Linear flatness [16]). A linear system is differ-
entially flat, if and only if, it is controllable.

In general, the choice of the flat output may not be unique.
In this paper, we adopt the procedure proposed by Yong et
al. [21] to derive the flat output as well as the flatness map:

Theorem 2. If (A,B) is controllable, then there exists a
matrix T ∈ Rm×n, such that the following y is the flat
output of the system:

y =
[
y1 · · · ym

]⊤ ≜ T x ∈ Rm. (2)

Moreover, there exists matrices S ∈ Rn×(n+m), and H ∈
Rm×(n+m), such that the state and the input of the system
can be represented by the following flatness map:

x = Sy, u = Hy,

where y is the extended flat output vector consisting of yis
and their derivatives, i.e.,1

y ≜
[
y1 · · · y

(κ1+1)
1 · · · ym · · · y

(κm+1)
m

]⊤
∈ Rn+m.

(3)

The procedure to construct the T , S, H matrices and ex-
tended flat output y (including the calculation of κi) is
omitted due to space limit and the readers can refer to [21]
for more details.

III. SDP FORMULATION OF MPC

This section is devoted to transcribing the MPC problem
of a continuous-time path constrained linear system (1) to an
SDP problem, the procedure of which is depicted in Fig 1. In
the next subsection, we first remove the differential equality
constraints in the MPC problem by differential flatness and
then convert the problem into a polynomial optimization
problem by parameterizing the flat output with piecewise
polynomials. The polynomial optimization problem is then
transformed into an equivalent SDP problem via Markov-
Lukács Theorem [17], [18] and Sum-of-Squares (SOS) in
Section III-B.

A. Polynomial Optimization Formulation of MPC

We consider an optimal control problem of the continuous-
time linear system (1) under state and input constraints,
which can be formulated in a receding horizon fashion as
follows:

Problem 1 (Continuous-time Linear MPC Problem).

min
x(t),u(t)

∫ T

0

x(t)⊤Qx(t) + u(t)⊤Ru(t)dt

s.t. ẋ(t) = Ax(t) +Bu(t), ∀t ∈ [0, T ]

Ξx(t) + Υu(t) ≤ b, ∀t ∈ [0, T ]

x(0) = x0,

where T is the horizon length and Ξ ∈ Rp×n, Υ ∈ Rp×m

are matrices and b ∈ Rp is a vector of proper dimensions.

Adopting the flatness map in Section II, we can express
the state x(t) and control input u(t) using the extended flat
output y(t) and hence removing the differential equation
constraint in Problem 1, which results in the following
problem:

1κi, i ∈ {1, · · · ,m} is determined by A,B and satisfies
∑m

i=1 κi = n.



Problem 2 (MPC using Flat Output).

min
y(t)

∫ T

0

y(t)⊤(S⊤QS +H⊤RH)y(t) dt

s.t. (ΞS +ΥH)y(t) ≤ b, ∀t ∈ [0, T ]

Sy(0) = x0.

Notice that Problem 1 and Problem 2 are equivalent, in
the sense that we can use the definition of the flat output
y = T x and the flatness map x = Sy, u = Hy to map the
solution of one problem to the other.

Further notice that the path constraint Ξx(t) + Υu(t) ≤
b (or (ΞS + ΥH)y(t) ≤ b), which consists of p linear
inequalities, requires that the state and the control input
(or the flat output) to be inside a polytope at all time
interval [0, T ]. Aside from very special cases, Problem 1
(or Problem 2) cannot be solved in the infinite dimensional
function space, due to the difficulty to determine when the
path constraints are active [12].

To facilitate optimization-based method to solve Prob-
lem 2, we propose to parameterize the flat output y(t) by
piecewise polynomials, which effectively reduce the domain
of the optimization problem from infinite dimensional func-
tion space to a finite dimensional space. To this end, first
define the polynomial basis of degree d as

γ(t) =
[
td · · · t 1

]⊤
. (4)

Suppose each entry of flat output y is represented by N
segments of polynomials in the horizon [0, T ]. Denote row
vector cl,i ∈ R(d+1)×1 as the coefficient of segment l of flat
output yi, i.e.,2

yi(t) =


c⊤1,iγ

(
tN
T

)
, 0 ≤ t < T

N

c⊤2,iγ
(
tN
T − 1

)
, T
N ≤ t < 2T

N
...

c⊤N,iγ
(
tN
T − (N − 1)

)
, (N−1)T

N ≤ t < T

.

(5)

Each segment of polynomial c⊤l,iγ (·) , l ∈ {1, · · · , N} has
been normalized such that the time variable is on interval
[0, 1].

By stacking the coefficients of the l-th segment cl,i verti-
cally, we have the overall coefficient vector

cl ≜

 cl,1
...

cl,m

 ∈ Rm(d+1)×1, c ≜

 c1
...
cN

 ∈ Rm(d+1)N×1.

(6)

As a result, instead of optimizing y in the infinite-
dimensional function space, we can restrict ourselves to the
following polynomial optimization problem:

2Since we need smoothness constraints on the conjecture points of
segments, cl,i, · · · , cl+1,i are not fully free and coupled by equality
constraints.

Problem 3 (Polynomial Optimization).

min
c

J(c) = c⊤Pc

s.t. (Ljcl − gj)
⊤γ(t) ≥ 0, ∀t ∈ [0, 1],

j ∈ {1, · · · , p}, l ∈ {1, · · · , N}
h⊤
j c = rj , j ∈ {1, · · · , 2mN}

The calculation of parameters in Problem 3 is as follows.
Define ej as the canonical basis vector of length d+1, with
1 on the j-th entry and 0 on other entries. Define a matrix
to represent the derivative of d degree polynomial:

D ≜


0
d 0

d− 1 0
. . . . . .

1 0

 ∈ R(d+1)×(d+1). (7)

Thus, for any coefficient c ∈ Rd+1, we have polynomial

derivative equation
d(c⊤γ(t))

dt = (Dc)⊤γ(t). Define Dk =[
I D⊤ (D2)⊤ · · · (Dk)⊤

]⊤
. Then based on (3), one

can verify that after polynomial parameterizing, the rela-
tionship between flat output y and extend flat output y are
y = Π · y with Π defined as

Π ≜


Dκ1+1

Dκ2+1

. . .
Dκm+1

 .

Denote the j-th row of Ξ,Υ as [Ξ]j , [Υ]j respectively. Denote
the j-th entry of vector b as bj . Then the parameters in
Problem 3 is defined as:

Lj ≜ (([Ξ]jS + [Υ]jH)⊗ Id+1)×Π,

gj ≜bj ed+1,

where ⊗ is the Kronecker product and Id+1 is the identity
matrix of size (d+ 1)× (d+ 1).

The equality constraints are composed of segment smooth
conditions and initial conditions, that is, for neighboring
polynomial segments, the value of the polynomial and the
value of its first-order derivative at conjecture points are the
same or satisfy prescribed initial conditions. The equality
constraint parameters are defined by

hj =



eN
1 ⊗ ej ⊗ ed+1, if 1 ≤ j ≤ m.

eN
l ⊗ ej−m ⊗ ed+1 − eN

l+1 ⊗ ej−m ⊗ 1d+1,

if m+ 1 ≤ j ≤ mN.

eN
1 ⊗ ej ⊗ ed, if mN + 1 ≤ j ≤ mN +m.

eN
l ⊗ ej−mN−m ⊗ ed+1 − eN

l+1 ⊗ ej−Nm−m ⊗ 1d+1,

if mN + 1 ≤ j ≤ mN +m.

where eNj is the canonical basis vector of size N , with 1 on
the j-th entry and 0 on other entries.

rj =


[T x0]j , if 1 ≤ j ≤ m.

0, if m+ 1 ≤ j ≤ mN.

[T Ax0]j−mN , if mN + 1 ≤ j ≤ mN +m.

0, if mN + 1 ≤ j ≤ mN +m.



Define matrix Pint ∈ R(d+1)×(d+1) associating objective
function integration on [0, 1] as

[Pint]u,v =
1

2d+ 3− u− v
. (8)

The parameter P ∈ RmN(d+1)×mN(d+1) in the objective of
Problem 3 is calculated by

P =
(
(SΠ)⊤QSΠ+ (HΠ)⊤RHΠ

)
⊗ IN ⊗ Pint. (9)

Remark 1. Piecewise polynomials are chosen to represent
the flat output for the following reasons:

• The set of polynomials are closed under derivative
operation and is dense in the function space, as is
shown by the Stone-Weierstrass theorem. Hence, we
can approximate any continuous functions to arbitrary
precision. In fact, one can also use polynomials to
approximate the derivatives and high order derivatives
of a smooth enough function [22].

• The continuous-time path constraints are transformed
into non-negativity of a univariate polynomial inside an
interval, which can be transformed exactly into Positive
Semi-Definite (PSD) cone constraint using Markov-
Lukács theorem and SOS [17]. The detailed discussion
is reported in the subsequent subsection.

B. SDP Formulation via SOS

This subsection is devoted to the exact SDP formulation
of the polynomial optimization Problem 3. To this end, the
following theorem is needed:

Theorem 3 (Markov-Lukács theorem [17]). Let a < b. Then,
a polynomial p(t) is non-negative for t ∈ [a, b], if and only
if it can be written as

p(t) =

{
f(t) + (t− a)(b− t)g(t), if deg(p) is even
(t− a)f(t) + (b− t)g(t), if deg(p) is odd

,

where f(t), g(t) are SOS polynomials, with degree deg(f) ≤
deg(p), deg(g) ≤ deg(p) − 2 when deg(p) is even, or
deg(f) ≤ deg(p)− 1, deg(g) ≤ deg(p)− 1 when deg(p) is
odd.

For simplicity, we shall only consider the case where the
flat output y is an odd degree polynomial, i.e., d is an odd
number. The case where d is even can be treated similarly.
Let us denote δ ≜ d−1

2 . Notice that a degree d − 1 SOS
polynomial f can be represented as

f(t) = γ̃(t)⊤Xγ̃(t),

with γ̃(t) ≜
[
tδ · · · t 1

]⊤
and positive semi-definite

matrix X ∈ R(δ+1)×(δ+1).
As a result, each inequality constraint (Ljcl−gj)

⊤γ(t) ≥
0 in Problem 3 can be equivalently represented as

(Ljcl − gj)
⊤γ(t) =

tγ̃(t)⊤Xf
j,lγ̃(t) + (1− t) γ̃(t)⊤Xg

j,lγ̃(t), (10)

with positive semi-define matrices Xf
j , X

g
j ∈ R(δ+1)×(δ+1).

By comparing the coefficients of the polynomials on the LHS
and RHS of (10), we know that (10) is equivalent to:

Ljcl − gj =M(Xf
j,l, X

g
j,l) (11)

where

M(Xf
j,l, X

g
j,l) =


tr(F0X

f
j,l) + tr(G0X

g
j,l)

tr(F1X
f
j,l) + tr(G1X

g
j,l)

...
tr(FdX

f
j,l) + tr(GdX

g
j,l)

 , (12)

and {Fi, Gi|i = 0, 1, · · · , d} is a sequence of constant
matrices defined as

[Fi]u,v =

{
1, if u+ v = i+ 2

0, otherwise
,

[Gi]u,v =


−1, if u+ v = i+ 2

1, if u+ v = i+ 1

0, otherwise
,

where [·]u,v represents the entry at row u, column v in a
matrix. Notice that linear function M(·, ·) is independent of
index j, l.

Now we handle the second order objective function
J(c) = c⊤Pc by linear matrix inequality techniques. No-
tice that P is a positive semi-definite matrix, define P̃ ∈
Rrank(P )×size(P ), such that P̃⊤P̃ = P . Notice that the
following three optimization problems are equivalent where
s is a scalar:

min
c∈C

c⊤Pc⇔ min
c∈C,s

s, s.t. ∥P̃c∥2 ≤ s

⇔ min
c∈C,s≥0

s, s.t.
[
P̃c
s

]
∈ second order cone.

We arrive at the following SDP problem which is equivalent
to Problem 3 and computationally tractable.

Problem 4 (SDP Problem).
Original form

min
c,s,{Xf

j,l,X
g
j,l}

s

s.t. Ljcl − gj =M(Xf
j,l, X

g
j,l), X

f
j,l, X

g
j,l ∈ S+,

j ∈ {1, · · · , p}, l ∈ {1, · · · , N} (13)

h⊤
j c = rj , j ∈ {1, · · · , 2mN} (14)[
P̃c
s

]
∈ SOC

where SOC denotes the second order cone and S+ is the
positive semi-definite cone.

For notation conciseness, we define:

X ≜


Xf

1,1

Xg
1,1

. . .
Xf

p,N

Xg
p,N

 . (15)



Problem 1

Problem 2

Differential
flatness

Problem 3

Problem 4

Polynomial
parametrization

Markov-Lukács
Theorem

Fig. 1: The relationships between optimization problems in
this paper. Double tail arrow represents that the two problems
are equivalent. Single tail arrow means that Problem 3 is
obtained by parameterizing Problem 2 using polynomials.

Moreover, define function

M(X) =

M(Xf
1,1, X

g
1,1)

...
M(Xf

p,N , Xg
p,N )

 =



tr(M
0
1,1X)
...

tr(Md
1,1X)


...tr(M
0
p,NX)
...

tr(Md
p,NX)




,

(16)

where M i
j,l is the corresponding matrix composed of Fi, Gi

at compatible position that generates M(Xf
j,l, X

g
j,l) in (12).

Define

L =IN ⊗
[
L⊤
1 L⊤

2 · · · L⊤
p

]⊤
, (17)

g =IN ⊗
[
g⊤1 g⊤2 · · · g⊤p

]⊤
, (18)

h =
[
h⊤
1 h⊤

2 · · · h⊤
2mN

]⊤
, (19)

r =
[
r⊤1 r⊤2 · · · r⊤2mN

]⊤
. (20)

We can rewrite Problem 4 as
Compact form

min
s,c,X

s

s.t. Lc−M(X) = g (21)
hc = r (22)
X ∈ S+, s ≥ 0[
P̃c
s

]
∈ SOC

Since there are p inequality constraints in the original
Problem 1, X is a block diagonal matrix with 2pN positive
semi-definite matrices of size δ + 1. As a result, in the
following section, we introduce a customized algorithm that
solves Problem 4 by primal-dual hybrid gradient methods
which can handle X in a parallel fashion. However, before
continuing on, we would like to give a comparison between
the conventional quadratic programming-based linear MPC
and our approach.

C. Discussions

A conventional way to solve the continuous-time optimal
control problem is to discretize it into the following discrete-
time linear MPC problem [12]:

Problem 5 (Discrete-time Linear MPC Problem).

min
{x[k],u[k]}Td

k=1

Td∑
k=1

x[k]⊤Qx[k] + u[k]⊤Ru[k]

s.t. xk+1 = Adxk +Bduk, k = 1, · · · , Td

Ξx[k] + Υu[k] ≤ b, k = 1, · · · , Td

where Ad, Bd are the discretized system matrix assuming
zero-order hold for the control input is used and Td ∈ Z+ is
the discrete horizon length.

One of the main differences between Problem 5 and
Problem 3 is that the control input is parameterized as step
functions in Problem 5 (assuming zero-order hold is used),
while for our case, the flat output (and hence the control input
as it is a linear function of the flat input and its derivatives)
is parameterized as polynomials.

Another difference is that Problem 5 is a Quadratic
Programming (QP) problem and hence can be solved more
efficiently than SDP. However, this is due to the fact that in
Problem 5, constraints are only required to hold at discrete
sampling time instants and therefore they may be violated in
between sampling times.

On the other hand, the reason for our SDP formulation
is that we want to have an exact representation of the
continuous time path constraints. If we only require the
constraint to hold at discrete time instant, since the value
of a polynomial at a time instant is a linear function of
its coefficients, we can express such constraints as linear
inequalities on the coefficients of the polynomial, which
effectively relaxed the polynomial optimization Problem 3
into a QP problem that only guarantees constraint satisfaction
at a discrete time instant. As an alternative, one could also
leverage the following theorem to generate a QP problem,
which has a smaller feasible set than that of Problem 3, but
is guaranteed to satisfy the path constraints at every time
instant.

Theorem 4 ( [23]). Let Pd([a, b]) denote the set of polyno-
mials p(t) > 0, ∀t ∈ [a, b]. Define

Pq :=

 ∑
i+j≤q

cij(b− x)i(x− a)j

∣∣∣∣∣∣ cij ≥ 0

 .

If polynomial p ∈ Pd([a, b]), then p ∈ Pq for sufficiently
large integer q.

IV. ACCELERATED SDP SOLVING WITH PARALLEL
COMPUTING

A. Primal dual hybrid gradient for SDP solving

In this subsection, we present the primal-dual hybrid gra-
dient algorithm that solves Problem 4. Encode the constraints



into the objective function as

min
s,c,X

s+ IS+,SOC(X, c̃, s) + I=(X, c, c̃), (23)

where c̃ = P̃c is the slack variable, and the indicator
functions are defined as

IS+,SOC(X, c̃, s) =

0, if X ∈ S+ and

[
c̃

s

]
∈ SOC

+∞, otherwise

.

(24)

I=(X, c, c̃) =


0, if


Lc−M(X) = g

hc = r

P̃c− c̃ = 0

+∞, otherwise

. (25)

Using primal-dual operator splitting [24], the iterations can
be derived as the following where α is the primal step-size
and β is the dual step-size. D∗

X(·) is the conjugate operator
of the linear mapping M(X), and D∗

c(·) is the conjugate
operator of the linear mapping

[
L⊤ h⊤ P̃⊤]⊤ c, the

definition of which are given in (35) and (36) respectively.
1. Primal step:

Xk+1 ← projS+(X
k − αD∗

X(λk
1)) (26)

ck+1 ← ck − αD∗
c(λ

k
1 , λ

k
2 , λ

k
3) (27)[

c̃k+1

sk+1

]
← projSOC

[
c̃k − α(−λk

3)
(sk − α)+

]
(28)

where (sk − α)+ = max(sk − α, 0).
2. Calculating difference:

∆Xk+1 ← 2Xk+1 −Xk (29)

∆ck+1 ← 2ck+1 − ck (30)

∆c̃k+1 ← 2c̃k+1 − c̃k (31)

3. Dual step:

λk+1
1 ← λk

1 + βL∆ck+1 − βM(∆Xk+1)− βg (32)

λk+1
2 ← λk

2 + βh∆ck+1 − βr (33)

λk+1
3 ← λk

3 + βP̃∆ck+1 − β∆c̃k+1 (34)

Here λ1 is the dual variable corresponding to the equality
constraint (21) and equivalently (13). λ2 is the dual variable
corresponding to the equality constraint (22) and equivalently
(14). λ3 is the dual variable corresponding to the equality
constraint P̃c− c̃ = 0. Define λ =

[
λ⊤
1 λ⊤

2 λ⊤
3

]⊤
.

We denote the entry of λ1 corresponding to segment l,
inequality index j, order i as λ1[i, j, l], i ∈ {0, · · · , d}, j ∈
{1, · · · , p}, l ∈ {1, 2, · · · , N}. Recall the definition of M i

j,l

in (16). The conjugate operators D∗ are defined as3

3We use [A]j to denote the j-th row of matrix A, or in case of A is
column vector, j-th entry of the vector A.

D∗
X(λ1) ≜−

N∑
l=1

p∑
j=1

d+1∑
i=1

λ1[i, j, l]M
i
j,l (35)

D∗
c(λ1, λ2, λ3) ≜

N∑
l=1

p∑
j=1

d+1∑
i=1

λ1[i, j, l]
(
eNl ⊗ [Lj ]

⊤
i

)
+

2mN∑
j=1

[λ2]jhj + P̃⊤λ3 (36)

where eNl is the canonical basis vector of size N , with 1 on
l-th entry and 0 on other entries.

The projection to the semi-definite cone is

projS+(X) =

size(X)∑
i=1

max {0, νi}µiµ
⊤
i (37)

where νi, µi are the eigenvalue and the corresponding eigen-
vector of X . The projection to the second order cone is

projSOC

[
c
s

]
=


s+∥c∥2

2∥c∥2

[
c

∥c∥2

]
if ∥c∥2 > s.[

c

s

]
if ∥c∥2 ≤ s.

. (38)

The convergence of algorithm (26)-(34) is provided in the
following.

Theorem 5 ( [25]). Assume the solution to KKT conditions
of Problem 4 exists (denoted by c⋆,X∗, s∗, λ∗), and strong
duality holds. If the linear projection defined by

L(c,X) =

[
Lc−M(X)

hc

]
and step sizes α, β satisfy 0 < αβ < 1/ ∥L(c,X)∥2, then
the primal dual hybrid gradient descent algorithm (26)-(34)
converges to the solution to KKT conditions, i.e., ck →
c⋆,Xk →X⋆, sk → s⋆, λk → λ⋆.

B. GPU parallel computing
It is worth noticing that for our proposed iterations, a

significant proportion of the time will be spent on the
projection projS+(·). However, since X is a block diagonal
matrix with 2pN matrices of size δ + 1 on its diagonal, the
projection of X can be parallelized by projecting each small
matrices onto the PSD cone. Furthermore, the calculation
of D∗

X ,D∗
c in (35) and (36), and the difference calculation

in (29) are essentially tensor operations and hence can be
accelerated by parallel computation.

To speed up the computation of the proposed PDHG
solver, we implement it in a parallelized manner on the GPU.
Specifically, the projection step (26) is wrapped as a kernel to
be computed in parallel on the GPU. Additionally, we imple-
ment the calculation of D∗

X and D∗
c in (35) and (36), as well

as the update steps from (27) to (34) as tensor operations,
which can also be accelerated by GPU parallelization.

We test the implemented our proposed solver on a desk-
top computer equipped with an AMD Ryzen Threadrip-
per 3970X 32-Core Processor and an NVIDIA GeForce



RTX 3080 GPU. We report the computation time for a
single iteration of the parallelized solver running on GPU
in Table I, and compare it to that of a serialized version
running on the CPU. Our results show that the iteration
time of the accelerated solver is significantly shorter than
that of the CPU version. Moreover, the computation time of
the accelerated solver increases slowly as the problem size
(the value d and N ) grows. Even for the largest problem
instances considered, the iteration time remains within a few
milliseconds, demonstrating the effectiveness of the GPU
acceleration and the efficiency of the implementation.

N
d

3 5 7

2 0.318 (1.874) 0.345 (2.773) 0.390 (3.778)
6 0.408 (5.159) 0.443 (8.012) 0.435 (11.240)
10 0.431 (8.811) 0.506 (13.758) 0.547 (19.254)
20 0.484 (19.449) 0.649 (30.721) 0.821 (42.886)
30 0.561 (32.330) 0.767 (50.046) 1.187 (63.170)
40 0.776 (46.167) 1.394 (65.989) 2.593 (93.495)

TABLE I: Time consumption (in milliseconds) of a single
iteration of the PDHG solver (calculating updates (26)-(34))
for different problem sizes. The runtime on CPU is in
parentheses.

C. Warm Start and Termination Rule
Denote ∆t as the control apply time length of each

solution. To facilitate the simple warm start strategy, the
horizon T satisfies T = N · ∆t, i.e., the first segment
of control input u(t) is applied before receding to a new
horizon. We evaluate our algorithm’s performance in two
different strategies: cold start, and warm start. The cold start
strategy initializes the optimization variable c(t+∆t),X(t+
∆t), λ(t + ∆t) as random vectors/matrices with each entry
uniformly distributed on [−0.5, 0.5]. The warm start strategy
initializes the optimization variable in a shifting manner, i.e.,
∀ 2 ≤ l ≤ N, 1 ≤ j ≤ p:(

Xf
j,l(t+∆t)

)0

:=
(
Xf

j,l−1(t)
)τ(t)

(
Xg

j,l(t+∆t)
)0

:=
(
Xg

j,l−1(t)
)τ(t)

(cl(t+∆t))
0
:= (cl−1(t))

τ(t)

where the super script τ(t) is the number of iterations
applied to solve the SDP problem at time t. For the first

segment,
(
Xf

j,1(t+∆t)
)0

,
(
Xg

j,1(t+∆t)
)0

, (c1(t+∆t))
0

are initialized randomly. The dual variable λ is also initial-
ized in a shifting manner according to its correspondence
with X, c in (32)-(34).

The algorithm termination is determined by the residue
ϵk = ϵkprimal + ϵkdual where the primal and dual residue are
defined as:

ϵkprimal =

∥∥∥∥ 1α (
Xk −Xk−1

)
−D∗

X

(
λk − λk−1

)∥∥∥∥
F

+

∥∥∥∥ 1α (
ck − ck−1

)
−D∗

c

(
λk − λk−1

)∥∥∥∥
2

ϵkdual =

∥∥∥∥ 1β (
λk − λk−1

)
−

L(ck − ck−1)−M(Xk −Xk−1)− g
h(ck − ck−1)− r

P̃ (ck − ck−1)− (c̃k − c̃k−1)

∥∥∥∥∥∥
2

.

∥ · ∥F is the Frobenius norm. Our proposed algorithm
terminates when ϵk corresponding to segment 1 is below
2×10−2, which is accurate enough for control performance.
The control and computational speed performance is demon-
strated in the next section.

V. SIMULATION

The performance of the proposed MPC solver is vali-
dated on the quadruple-tank process [26], whose schematic
diagram is visualized in Fig. 2. The system has 4 states,
which represent the liquid levels (in centimeter) of each
tank. There are two control inputs in the system, namely
the voltage (in volt) of Pump 1 and Pump 2 in Fig. 2. The
simulation employs the same linearized system equations and
system parameters as [26], which are omitted due to space
limitations.

Fig. 2: The schematic diagram of the quadruple-tank process.

The initial conditions of the tanks are

x0 =
[
10 19 19 1

]⊤
,

and the control objective of the MPC is to track a reference
trajectory r(t) of the liquid levels. For simplicity, we set the
constant reference trajectory as

r(t) =
[
19.9 19.9 2.4 2.4

]⊤
.

In addition to tracking the reference signal, the MPC must
ensure that the liquid levels in all tanks remain between 0
to 20 cm and that the control inputs stay in the voltage
limit between 0 to 8 V during the control process. The
objective weighting matrices in MPC Problem 1 are defined
as Q = I,R = 0.1I with appropriate dimensions. Our code
is available on https://github.com/zs-li/MPC_PDHG.

https://github.com/zs-li/MPC_PDHG


A. Control Performance

For comparison, we employ the Quadratic Programming
(QP) formulation (Problem 5), where the MPC problem is
discretized with a sampling interval of Ts = 1s and horizon
length Td = 20. On the other hand, for the proposed method,
we set the degree of polynomial d = 3 and the segments of
polynomials N = 20, horizon length T = 20. For each
iteration, the resulting control input applies to the system
for ∆t = 1 second. Thus, the two methods are comparable
in terms of horizon length and update frequency. We sim-
ulate the control process for 120 seconds and visualize the
resulting system states and control inputs in Fig. 3-Fig. 5.
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Fig. 3: The states of discrete time linear MPC using the
QP solver. The gray area in the figures denotes the feasible
region of states. The states between sampling times violate
the constraints.

As shown in Fig. 5, at the first glance, the state trajectories
obtained from both solvers are nearly identical. However,
upon close inspection, it can be seen that even though the
QP-based controller satisfies the constraints at discrete-time
instants, the constraints are violated in between sampling in-
stants. In contrast, the proposed algorithm ensures constraint
satisfaction on the whole time interval.

B. Computational Speed Performance

In the following, we compare the computational speed
performance of our proposed algorithm and several off-
the-shelf solvers (on Problem 4) under different numbers
of polynomial degrees d and polynomial segments N . The
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Fig. 4: The states of continuous time linear MPC using our
proposed solver. The gray area in the figures denotes the
feasible region of states. The states using our proposed MPC
input stays in the feasible region for whole time interval.
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Fig. 5: Comparison on the input trajectory using the QP and
the proposed SDP strategy respectively. The gray area in the
figures denotes the feasible regions of control input.

block number for GPU acceleration is set as 128. The number
of threads on every block is ⌈ pN128⌉. The computational time
in Figure 6 is the average solving time of the first 100
apply steps. The step sizes are α = 0.2, β = 0.4. The
computation platform is the same as in Subsection IV-B,
i.e., a desktop computer equipped with an AMD Ryzen
Threadripper 3970X 32-Core Processor and an NVIDIA
GeForce RTX 3080 GPU. The real number calculations on
GPU are floating point number with hybrid precision 32-bit
and 16-bit, which is computationally efficient and accurate
enough for control applications. As for comparison, the
other solvers are of default precision 64-bit. Thus, the time
comparison may not be equal but represents our computation
speed superiority to some extent.

As shown in Fig. 6, our proposed algorithm has better
scalability for large problems (especially lagre N ), and
has low computational time promising for real-time control
applications. The warm-start technique introduced in Sub-
section IV-B can effectively reduce the computation time by
reducing iterations. For off-the-shelf solvers, COSMO and
COPT perform well on large-scale problems compared to
other solvers. However, their computation is still slow and
incompatible with real-time control scenarios.

We demonstrate the number of iterations required to
reach (ϵk)1 < 10−2 for different problem sizes in Fig 7.
The iteration number required grows gently as the problem
size grows, which also corroborates the scalability of our
proposed solver. The warm-start technique introduced in
Subsection IV-B can effectively reduce the iteration number.

Define Lagrange function of Problem 4 as L (c, s,X;λ),
then the relative duality gap is defined as

1

J(c)

[
inf

c,s,X
L (c, s,X;λ)− sup

λ
L (c, s,X;λ)

]
,

where J(c) is the objective value of Problem 3 and equiva-
lently Problem 4. We demonstrate the convergence of relative
duality gap with respect to iteration number in Fig. 8. The
relative duality gap converged below 10−5 within approxi-
mately 500 iterations. The problem sizes scarcely influence
the convergence speed of the relative duality gap, which also
indicates good scalability of our proposed algorithm.
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Fig. 6: The states of discrete time linear MPC using the QP
solver.
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VI. CONCLUSION

In this paper, we aim to address continuous-time path-
constrained linear MPC problems while ensuring that path
constraints are satisfied at every time interval. To achieve
this, we propose an algorithm that utilizes differential flatness
to eliminate dynamic constraints. Furthermore, by parameter-
izing the flat output with piecewise polynomials, we formu-
late a polynomial optimization problem where the decision
variables are finite-dimensional polynomial coefficients, and
the inequality path constraints are polynomial non-negativity
constraints on intervals, which remain infinite-dimensional.
Taking advantage of the Markov-Lukács theorem from SOS
theory, we transform the polynomial optimization problem
into an equivalent SDP problem that is computationally
tractable. To accelerate the solving process of the SDP
problem, we use a customized PDHG algorithm, which
exploits the block-diagonal structure of the PSD matrix to
perform paralleled computation. The numerical simulation
of a quadruple-tank process validates that our proposed
algorithm can ensure that the path constraints are satisfied
at every time interval. Moreover, the parallel accelerated
design of our algorithm results in superior computational
speed performance.
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