
Game Theoretical Approach to Sequential Hypothesis Test with
Byzantine Sensors

Zishuo Li1, Yilin Mo2, and Fei Hao1

Abstract— In this paper, we consider the problem of sequen-
tial binary hypothesis test in adversary environment based on
observations from s sensors, with the caveat that a subset of
c sensors is compromised by an adversary, whose observations
can be manipulated arbitrarily. We choose the asymptotic
Average Sample Number (ASN) required to reach a certain
level of error probability as the performance metric of the
system. The problem is cast as a game between the detector
and the adversary, where the detector aims to optimize the
system performance while the adversary tries to deteriorate it.
We propose a pair of flip attack strategy and voting hypothesis
testing rule and prove that they form an equilibrium strategy
pair for the game. We further investigate the performance of
our proposed detection scheme with unknown number of com-
promised sensors and corroborate our result with simulation.

I. INTRODUCTION

Recent advancements in communication technology and
sensing elements have made networked sensor system more
readily available in control systems, performing the func-
tion of observation, detection and monitoring. However, the
reliance on communication and sparsely spacial distribution
make the sensor system vulnerable in the presence of various
cyber attacks such as measurement manipulation, commu-
nication block, false data injection, etc. Since malicious
attacks, such as Stuxnet [1] and BlackEnergy malware [2]
may incur substantial damage on economy, ecosystem and
even public safety, designing resilient networked system with
secure detection, estimation and control algorithm has been
recognized by both engineers and scholars as a significant
research field.

In this paper we consider the problem of detecting a binary
state θ with s sensors in adversarial environment. We assume
c out of s sensors are compromised and their observations
could be manipulated arbitrarily by the adversary. We in-
troduce the Byzantine attack setting where system manager
has no information about the exact set of corrupted sensors
but only knows the cardinality of the set. The detection
performance is evaluated by its Average Sample Number
under prescribed level of significance (probability of error).
We adopt a similar formulation as [3] where the problem is
considered as a game between the detector and the attacker,
in which the detector attempts to optimize the performance
while the adversary intends to deteriorate it. A pair of
strategy (attack strategy from the adversary and hypothesis
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testing scheme from the detector) is proposed and proved
to be a Nash equilibrium pair for the game. Furthermore,
scenario with unknown number of compromised sensors
is investigated and choice of parameter in sequential test
algorithm is discussed. Result of this paper is verified by
numerical simulation.

Related Work: The study of sequential analysis (to the
best of our knowledge) originated from Abraham Wald et
al. [4][5] who proposed the Sequential Probability Ratio
Test (SPRT) and proved its optimality in 1940s. Due to
its wide applicability and optimality in hypothesis testing,
sequential analysis has gained wide application in sensor
network security design [6][7], change detection[8][9], signal
anomaly detection [10][11], etc.

As threats to control systems from cyber attacks are
increasing rapidly these days, studies about secure detec-
tion problem draw attention from researchers. The research
efforts can be classified into two main directions: anomaly
diagnose and resilient algorithm design. In the former one,
anomaly diagnosis schemes are designed to reveal the exis-
tence of attack and trigger alarm and/or recovery mechanism.
For example, the problem of revealing the existence of
attacks and vulnerable part of the system that requires pro-
tection is considered in [12] and [13]. In the research about
resilient algorithm design, researchers pursuit a scheme of
secure system which has graceful performance degradation
in the presence of attack. Since attacks may not be eliminated
immediately even if we know its existence because of the
concealment of attackers in cyberspace, resilient algorithm
design is preferred in the sense of safety guarantee. We
choose resilient testing algorithm design as our research goal
in this paper.

The problem of resilient inference has been studied from
various perspective recently including hypothesis testing
[3][14], change detection [9][8], state estimation [15], etc.
We focus on hypothesis testing problem. Similar formulation
of detecting a binary state with multiple sensors under
Byzantine attack is studied by Ren et al. [16] recently
and the problem of security-efficiency trade-off is raised.
Moreover, the model is extended to multi-hypothesis testing
and heterogeneous sensor scenario where game theoretic
approach is adopted [17] and sensor selection problem is
investigated [18].

Main Innovation: We consider the problem of detecting a
binary state using sequential analysis in the sense that stop-
ping time is determined by observations while some other
researches use a prescribed number of observed samples, e.g.
one-shot scheme [19][20] and fixed time analysis [16]. By
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making decision adapted to observations, Average Sample
Number is saved (as can be seen in Remark 8) because
sampling is stopped as soon as the existing observations
possess enough preference on a certain hypothesis. The
efficiency of detection sampling in our paper is evaluated
and optimized by integrating ASN into performance metric
(see definition of delay in equation 5). Similar methodology
could be seen in the study of change detection (e.g. [8][21]).

Organization: The rest of this paper is organized as
follows: In Section II, we formulate the problem of binary
hypothesis test and define the admissible attack and binary
state detecting strategy as well as the performance metric. In
Section III, we propose an attack strategy by flipping the dis-
tribution of observations from the compromised sensors and a
resilient detection strategy by voting among all sensors. This
pair of strategy is then proved to form an equilibrium pair
for the game between attacker and detector. In Section IV,
the scenario where actual number of compromised sensors
is unknown is investigated and corresponding performance
is quantified. Simulation result is provided in Section V, and
Section VI finally concludes the paper.

Notations: We denote by Z+ the set of positive integers
and by R the set of real numbers. We denote by x ∼ y
when x/y→1. Cardinality of a finite set S is denoted as |S |.
Transpose of a vector or matrix is denoted by superscript T .

II. PROBLEM FORMULATION
A. Binary Hypothesis Testing

Suppose there is a binary state θ ∈ {0,1} detected by
a group of s sensors. At each discrete time index k, the
observation from each sensor i ∈ S , {1,2, ...,s} is collected
by a fusion center. Let row vector xxxi = [xi(1),xi(2),xi(3), ...]
denote the sequence of observations from the ith sensor and
column vector xxx(k) = [x1(k),x2(k),x3(k), ...,xs(k)]T denote
the observations at time k from all sensors. We assume
that all observations from different sensors at different time
are independently identically distributed for each θ . Simialr
to notations in [16], when the hypothesis is false (θ = 0),
probability measure generated by xi(k) is denoted as ν and
it is denoted as µ when the hypothesis is true (θ = 1).
In other words, for any Borel-measurable set B ⊆ R, the
probability that xi(k) ∈B equals to ν(B) when θ = 0 and
equals to µ(B) when θ = 1. We denote the probability space
generated by all measurements xxx(1), xxx(2), . . . as (Ω, F , Pθ )
, where for any l ≥ 1

Pθ (xi1(k1) ∈B1, . . . ,xil (kl) ∈Bl)

=

{
ν(B1)ν(B2) . . .ν(Bl) if θ = 0
µ(B1)µ(B2) . . .µ(Bl) if θ = 1

,

when (i j,k j) 6= (i j′ ,k j′) for all j 6= j′. The expectation taken
with respect to Pθ is denoted by Eθ .

We further assume that probability measure ν and µ are
absolutely continuous with respect to each other. Therefore,
the log-likelihood ratio Li(k) of xi(k) is well-defined as

Li(k), log
(

dµ

dν
(xi(k))

)
, (1)

where dµ/dν is the Radon-Nikodym derivative.

B. Byzantine Attack
Let the (manipulated) observation received by the fusion

center at time k be

xxx′(k) = xxx(k)+ xxxa(k), (2)

where xxxa(k) ∈ Rs is the deflective vector injected by the
attacker at time k. By adding values to the real observations
xxx(k), the attacker can rewrite them to arbitrary value they
assign. We have the following assumptions on the attacker.

Assumption 1 (Sparse Attack): There exists an index set
C ⊆ S with |C | = c such that

⋃
∞
k=1 supp{xxxa(k)} = C where

supp(xxx) , {i ∈ S : xi 6= 0} is the support of vector xxx. Fur-
thermore, the system knows the cardinality c, but it does not
know the set C .

Remark 1: It is conventional in the literature (e.g. [8]
[22][23]) to assume that the attacker possesses limited re-
sources, i.e., the number (or percentage) of compromised
sensors is fixed and is known by the system manager. The
value of c can also be seen as a design parameter representing
the tolerance of sensor corruptions in the system.

We denote by N , S \ C the honest (not affected by
attack) sensor. The information the attacker have access to
is assumed as follows:

Assumption 2 (Attacker Knowledge): (1) The attacker
knows the probability measure, i.e. µ and ν ; (2) The attacker
knows the real system state θ ; (3) The attacker knows the
real observation from all compromised sensors from the
beginning to the present time instant.

Remark 2: The only restriction on the attack strategy is
that the set of compromised sensors is fixed (from Assump-
tion 1). The attacker have adequate knowledge about the
system and can carry out complex attack strategies such as
time-varying or probabilistic ones. This assumption is con-
ventional in literature concerning the worst-case attacks (e.g.
[24]). Nevertheless, assuming the adversary to be powerful
when designing system would make sure its security and is
in accordance with the Kerckhoffs’s principle.

An admissible attack strategy is a mapping from attacker’s
information set to the bias vector that satisfies Assumption
1. Let the compromised sensor index set C = {i1, i2, · · · , ic}.
Define XXXC (k) as the matrix formed by true measurements
from time 1 to k at compromised sensors:

XXXC (k), [xxxC (1),xxxC (2), · · · ,xxxC (k)] ∈ Rc×k (3)

with

xxxC (k), [xi1(k),xi2(k), · · · ,xic(k)]
T ∈ Rc×1.

Similar to definition in (3), XXXa(k)∈Rs×k is defined as the
matrix formed by bias vectors xxxa(k) ∈ Rs×1 from time 1 to
k. The injected bias vector is designed by the attacker based
on its information set, i.e.

xxxa(k) = g(XXXC (k),XXXa(k−1),θ ,k) , (4)

where g is a measurable function of accessible observa-
tions XXXC (k), history attacks XXXa(k − 1), real state θ and
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time k such that xxxa(k) satisfies Assumption 1. Denote the
probability space generated by all manipulated observations
xxx′(1),xxx′(2), . . . as (Ω,F ,Pg

θ
) where θ is the real state. The

corresponding expectation is denoted as Eg
θ

.

C. Performance Metric

The detector at time k is defined as a mapping from the
manipulated observation matrix to the set of decision:

fk : XXX ′(k)→{continue,0,1},

where continue denote taking next observation at time k+1
because existing knowledge is not enough to make a deci-
sion. Decision 0 and 1 denote stop taking observations and
choose hypothesis H0 and H1 respectively. System’s strategy
f , ( f1, f2, · · ·) is defined as an infinite sequence of detectors
from time 1 to ∞.

Based on the definition of detection strategies, the stopping
time T representing the time that the test terminates is a
{F ′

t }-stopping time, where F ′
t is a σ -field of all the (ma-

nipulated) observations from time 1 to k: F ′
t = σ{XXX ′(k)}.

Define the worst case Average Sample Number (detection
delay) under attack g as

D(T ), max
θ=0,1

Eg
θ
[T ]. (5)

Denote the probability of Type-I and Type-II error1 of the
binary hypothesis testing problem as α and β respectively,
e.g. α , Pg

0[ fT = 1],β , Pg
1[ fT = 0]. As a detector needs

to make decisions based on as few samples as possible
under varying error probability constraints, we consider the
asymptotic performance as error probability tends to zero:

γ( f ,g), lim
α=β→0+

log(1/α)

D(T )
. (6)

Remark 3: By definition, γ( f ,g) ≥ 0 for any admissible
f and g because α ≤ 1 and D(T ) > 0. The performance
integrates error probabilities α,β with detection delay D(T )
which we hope to be small at the same time. It means larger
γ indicates better detection performance.

Remark 4: The performance γ is determined by both the
detection rule f and attack strategy g so it is denoted as
γ( f ,g). The system manager intends to design a resilient
detector f to maximize γ while the attacker needs malicious
attack g to minimize γ .

In this paper, we intend to propose a pair of strategy
( f ∗,g∗), such that for any strategies f and g, the following
inequality holds:

γ( f ,g∗)≤ γ( f ∗,g∗)≤ γ( f ∗,g). (7)

As a result, the pair of strategy ( f ∗,g∗) reaches a Nash
equilibrium (which is not necessarily unique). In other words,
given strategy of one player as f ∗ (or g∗), the other player
do not have a strictly better strategy. We present the strategy
pair in the next section.

1In statistical hypothesis testing, a type-I error is rejection of a true null
hypothesis H0, while a type-II error is the failure to reject a false null
hypothesis.

III. EQUILIBRIUM STRATEGY PAIR

In this section we present an attack strategy and a detection
scheme and prove that they can form a Nash equilibrium pair.

A. Preliminaries Results

Before we go on, we first present some basic results
of hypothesis testing scheme without attack which will be
helpful for future discussion. Denote the Kullback-Leibler
(K–L) divergences between those two distribution we are
trying to distinguish (i.e. µ and ν) as

I1 ,
∫

x∈R
log
[

dµ(x)
dν(x)

]
dµ(x), I0 ,−

∫
x∈R

log
[

dµ(x)
dν(x)

]
dν(x)

To avoid degenerate problems, we adopt the following
assumptions:

Assumption 3: The K–L divergences are well-defined,
i.e., 0 < I0, I1 < ∞.

We introduce a more general sequential test strategy for
multiple sensor based on Sequential Probability Ratio Test
proposed by Wald [25]. We denote the cumulative log-
likelihood ratio of sensor i at time n by Si(n) and the one
summing over set M by SM (n):

Si(n),
n

∑
k=1

Li(k), SM (n), ∑
i∈M

Si(n), (8)

where M ⊆ S . The decision is taken according to whether
the prescribed threshold is crossed, i.e.

fk =

 0, SM (k)≤−a
continue, −a < SM (k)< b

1, SM (k)≥ b
, (9)

where a,b> 0 are chosen to regulate error probabilities α,β .
Denote the defined detection rule based on summed log-
likelihood ratio from sensors in M as fM . We have the
following lemma quantifying performance of this test (called
sum-SPRT) in the absence of attack. The proof is provided
in Appendix A of [26] due to space limitation.

Lemma 1: Define I , min{I0, I1}, for all admissible test
rule f based on sensor information in M ,

γ( f ,g = 000)≤ γ( fM ,g = 000) = |M | · I, (10)

where g = 000 means the attacker is absent.
Remark 5: The performance of fM is proportional to the

number of sensors |M | and the constant I defined by K-L
divergence. Constant I who represents the ”distance” of two
distributions could be treated as a basic unit of performance.

Now we move on to consider the detection problem under
attack. We assume s > 2c to prevent trivial problems in the
rest of paper if without further notice.

B. Attack Strategy

In this subsection we show an attack strategy where the
attacker flips the distribution of the compromised sensor
observations under different states to confuse the detector.
We denote it as g∗ (named flip attack) and it is defined in
the following:
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Denote sensor index set of the first c sensors as O1 ,
{1,2, . . . ,c} and the set of last c sensors as O2 , {s− c+
1,s−c+2, . . . ,s}. If θ = 0, the adversary generates random
observations x̃i(k) at time k for every sensor i∈ O1 according
to the opposite distribution µ , i.e. for any Borel-measurable
set B,

P[x̃i(k) ∈B] = µ(B), θ = 0, i ∈ O1. (11)

Then the malicious bias data is designed to make sure the
final manipulated observations xi(k)+xa

i (k) of sensors in O1
are the same as x̃i(k):

xa
i (k) = x̃i(k)− xi(k), θ = 0, i ∈ O1. (12)

If θ = 1, observations in O2 is manipulated in similar way.

P[x̃i(k) ∈B] = ν(B), θ = 1, i ∈ O2. (13)

xa
i (k) = x̃i(k)− xi(k), θ = 1, i ∈ O2. (14)

For sensors not mentioned above, the bias value xa
i (k) = 0.

By this operation, the following inequality of performance
holds.

Theorem 1: For any admissible detection strategy f we
have

γ( f ,g∗)≤ (s−2c)I. (15)
Remark 6: The coefficient (s−2c) indicates that the de-

tector will have positive performance when less than half of
the sensors are compromised. It also implies every increase
of number of compromised sensor will incur two units of
performance decrease. The result follows from Theorem 3
(2) in [16].

Proof: Under attack g∗, for either θ = 0 or θ = 1,
sensors in O1 will follow distribution µ and sensors in O2
will follow distribution ν . In other words, only sensors in
S \ (O1 ∪O2) have different distributions under different θ .
Since we assume s > 2c, S \(O1∪O2) 6= /0. If we define M =
S \ (O1∪O2), according to Lemma 1:

γ( f ,g∗)≤ γ( fM ,g = 000) = |S \ (O1∪O2)|I = (s−2c)I.

Thus, equation (15) is obtained.

C. Detection Strategy

In this section we present a detection strategy that could
form a Nash equilibrium pair with flip attack g∗. Before we
present the detection rule, we first define some notations.

First we define the stopping time of single threshold test
for each sensor i in the following two equations. Similar to
basic SPRT, those two thresholds are denoted as −a < 0 < b:

τ
+
i (b), inf

k∈Z+
{Si(k)≥ b}. (16)

τ
−
i (a), inf

k∈Z+
{Si(k)≤−a}. (17)

Then sort those stopping time of the same threshold in an
ascending order and denote them as τ

−
(i)(a),τ

+
(i)(b) :

τ
−
(1)(a)≤ τ

−
(2)(a)≤ ·· · ≤ τ

−
(s)(a),

τ
+
(1)(b)≤ τ

+
(2)(b)≤ ·· · ≤ τ

+
(s)(b).

Define r as the parameter of decision rules with s/2 < r ≤ s
and the voting rule f (r) is defined as taking corresponding
hypothesis the first time when there have been r crossing
of the same threshold. The rule is showed formally in the
following. For each time k,

f (r)k =


continue, k < min{τ−

(r)(a),τ
+
(r)(b)}

0, k = τ
−
(r)(a)< τ

+
(r)(b)

1, k = τ
+
(r)(b)< τ

−
(r)(a)

0 or 1, k = τ
+
(r)(b) = τ

−
(r)(a)

. (18)

The decision 0 or 1 means stop sampling and take H0
or H1 with the same probability 0.5. Denote the detection
strategy defined above as f (r) , { f (r)1 , f (r)2 , . . .}. We denote
the stopping time of detection rule f (r) as T (r).

Before we show the performance of detection strategy, we
provide some preliminary results of stopping times and error
probabilities in absence of attack whose proof is provided in
Appendix B of [26] because of space limitation.

Theorem 2:

(1) lim
a=b→∞

E0

∣∣∣∣∣τ
−
(r)(a)

a
− 1

I0

∣∣∣∣∣= 0, lim
a=b→∞

E1

∣∣∣∣∣τ
+
(r)(b)

b
− 1

I1

∣∣∣∣∣= 0

(19)

(2) lim
a=b→∞

E0[T (r)]

a
≤ 1

I0
, lim

a=b→∞

E1[T (r)]

b
≤ 1

I1
(20)

(3) lim
a=b→∞

1
b

logP0[τ
+
(r)(b)≤ τ

−
(r)(a)]≤−r (21)

lim
a=b→∞

1
a

logP1[τ
−
(r)(a)≤ τ

+
(r)(b)]≤−r (22)

Based on Theorem 2 we are ready to show the perfor-
mance of our detection rule with carefully designed r.

Theorem 3: For any admissible attack strategy g, fix r =
s− c and denote f ∗ , f (s−c). We have

γ( f ∗,g)≥ (s−2c)I.
Proof: We show the following inequalities for arbitrary

attack g (notice that Pg
θ

and Eg
θ

denote probability and
expectation under attack g)

Eg
1[τ

+
(r)(b)]≤ E1[τ

+
(r+c)(b)]. (23)

Eg
0[τ
−
(r)(a)]≤ E0[τ

−
(r+c)(a)]. (24)

Pg
1[τ
−
(r)(a)≤ τ

+
(r)(b)]≤ P1[τ

−
(r−c)(a)≤ τ

+
(r−c)(b)]. (25)

Pg
0[τ
−
(r)(a)≥ τ

+
(r)(b)]≤ P0[τ

−
(r−c)(a)≥ τ

+
(r−c)(b)]. (26)

Due to space limitations, the proof of these four inequali-
ties above is shown in Appendix C of [26]. They are obtained
considering cumulative log-likelihood ratio and threshold-
reached time in the worst case given all admissible attacks.

We are ready to quantify the performance under attack
with the help of inequalities (23) to (26). On one hand,
detection delay can be upper bounded based on (19) and
(23):

Eg
1[T

(r)]≤ Eg
1[τ

+
(r)(b)]≤ E1[τ

+
(r+c)(b)]∼

b
I1
.

in which the first inequality comes from definition of voting
rule (18). On the other hand, error probability can be
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quantified based on (22) and (25):

β ≤Pg
1[τ
−
(r)(a)≤ τ

+
(r)(b)]

≤P1[τ
−
(r−c)(a)≤ τ

+
(r−c)(b)]≤Ce−(r−c)a,

where C is a constant term. Those two inequalities imply

lim
α=β→0+

log(1/β )

Eg
1[T

(r)]
= lim

a=b→∞

log(1/β )

Eg
1[T

(r)]

≥ lim
a=b→∞

(r− c) ·a
b/I1

= (r− c)I1.

When θ = 0, similar results could be derived from equation
(24) and (26). Thus, by replacing r with s−c, the final result
is obtained:

γ( f ∗,g)≥ (s− c− c)min{I0, I1}= (s−2c)I.

The proof is completed.
Combining Theorem 1 and 3, we are ready to show the

Nash equilibrium pair of strategies.
Theorem 4: Detection strategy f ∗ defined in (18) with

r = s−c and attack strategy g∗ defined in (11) to (14) form
a Nash equilibrium, i.e. for any admissible detection rule f
and attack g,

γ( f ,g∗)≤ γ( f ∗,g∗) = (s−2c)I ≤ γ( f ∗,g).
Proof: Set the detector in Theorem 1 as f ∗ and attack in

Theorem 3 as g∗ and we can obtain γ( f ∗,g∗)≥ (s−2c)I and
γ( f ∗,g∗)≤ (s−2c)I at the same time. Substituting (s−2c)I
with γ( f ∗,g∗) in theorem 1 and 3 leads to the result.

Remark 7: The payoffs for players of the game are γ( f ,g)
(for detector f ) and −γ( f ,g) (for attacker g). Notice that
the strategy set for this game is non-compact, the Nash
equilibrium does not necessarily exist. Our result actually
proved the existence of Nash equilibrium in addition to a
pair of specific strategy.

Remark 8: Since the definition of γ( f ,g) can also be used
to evaluate non-sequential detection schemes, we are able to
compare their performance with ours. We define

Ĩ ,− log
[

inf
w∈R

{∫
x∈R

(
dµ(x)
dν(x)

)w

dν(x)
}]

.

It has been shown in [16] Theorem 2 that 0 < Ĩ < I. The
detector performance defined in [16] is the same as ours
for fixed sample detecting scheme. However, the value of
detector performance in that paper is (s− 2c)Ĩ which is
smaller than ours. In this sense, our scheme is more sample-
efficient because the sampling is terminated as soon as
there is enough statistical information indicating the real
hypothesis.

Remark 9: Single time step computation complexity of
our detection scheme is O(s) as computing Si(k) and voting
among sensors both have a complexity of O(s). Therefore,
the computational complexity is lower than the result in [16]
where the sorting algorithm cause a computational com-
plexity of O(s logs). Moreover, voting detection algorithm
is more easily applied to distributed computing because the
sensors do not need to send the actual observations to the

control center but only need to inform whether the threshold
is crossed. System based on our detection algorithm have
less information transmission pressure and is more likely to
achieve better efficiency and resilience.

IV. EXTENSIONS

In the previous section, we assume the number of compro-
mised sensors c is known to the system manager. However,
in practice the real value may be unknown and what we
have is a estimation of its upper bound. It can be seen as a
design parameter denoting how many sensor corruptions the
system can tolerate. In this section, we study the condition
where we have an upper bound c and the actual number of
compromised sensors c can take value in {0,1,2, . . . ,c}.

We denote the voting detection rule with r = s−c as f̃ ,
f (s−c). We have the following Theorem revealing the lower
bound of its performance.

Theorem 5: Given detector f̃ , assume c is the actual
number of compromised sensors and c≤ c < s/2. Under any
admissible attack, we have

γ( f̃ ,g)≥ (s− c− c)I.
Proof: In this setting, Theorem 3 still holds true and

the only difference is the choice of r. Thus, the result is
obtained by substituting s− c with s− c.

Remark 10: The performance loss is in proportional to
the sum of estimation number of corruption c and the actual
number of corruption c. If c is fixed, excessive c > c will
cause unnecessary performance loss.

The result in Theorem 5 implies the performance lower
bound is (s−c)I when all sensors are benign. We present it
in the following Corollary formally.

Corollary 1: When there is no attack, i.e. c = 0, perfor-
mance is lower bounded:

γ( f̃ ,g = 000)≥ (s− c)I.
Remark 11: γ( f̃ ,g = 000) could be seen as the detection

efficiency of voting rule at normal operation (attacker is
absent). The increasing of c will sacrifice detection per-
formance in absence of attack while gaining better system
resilience. Thus, sufficient knowledge about the attacker (e.g.
how many sensors will be compromised) will be helpful for
system efficiency-security trade off. Since the equilibrium
strategy pair is not unique, questing for a detection rule
who can achieve maximum performance when the attack is
present and absent simultaneously is meaningful and could
be our future work.

V. SIMULATION

In this section, we provide some numerical examples to
verify the results established in the previous sections. We
assume the observations of sensors follow i.i.d. distribution
of N(−1,1)2 when θ = 0 and N(1,1) when θ = 1. In this
case I = I0 = I1 = 2.

We set s= 10 and c varies from 0 to 4. In Fig. 1, detection
and attack strategy are f ∗ and g∗ respectively. We calculate

2N(p,q2) represent Normal distribution with mean p and variance q2.
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detection delay D(T ) and error probability α with threshold
a = b vary from 5× 100 to 1× 105 for each fixed c. The
result log(1/α)

D(T ) is normalized by I and should tend to s−2c
according to Theorem 4. To simulate the error probability
with higher accuracy, we adopt the importance sampling
approach [27].

100 101 102 103 104 105
0

2

4

6

8

10

threshold a,b (a = b)

γ
(

f∗
,g
∗ )
/I

Fig. 1. Normalized performance of equilibrium strategy pair ( f ∗,g∗) when
s = 10 for c = 0 (black solid line), c = 1 (cyan dash dot line), c = 2 (green
dot line) , c = 3 (red dash line) and c = 4 (blue solid line).

VI. CONCLUSION

In this paper, we formulate the problem of binary se-
quential detection in adversarial environment as a game
between the detector and the attacker. Detection perfor-
mance is defined asymptotically by both error probability
and Average Sample Number as error probability tends to
zero and this value is integrated in the game as payoff
which the detector intends to maximize while the attacker
intends to minimize. We propose a pair of detection rule and
attack strategy and prove them to be an equilibrium pair of
the game. Furthermore, the performance in condition where
number of compromised sensor is unknown and where all
sensors are benign is quantified. The choice of detection
rule parameter r is discussed and result is corroborated
by numerical simulations. The future work includes the
trade-off between system’s security and efficiency as well
as discussion about (simultaneous) achievability of optimal
security and efficiency.
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